

Assessment of Solar Heating and Cooling

Comparison of Thermal and PV Driven Systems

Daniel Neyer

University of Innsbruck

Institute of Structural Engineering and Material Sciences Working Group: Energy Efficient Buildings

NEYER

Task53 Meeting, Messina, 2017/04/19-20

Slide: 1

Arbeitsbereich **Energieeffizientes Bauen**

universität innsbruck

Content

- Task 53 key figures
- Results from studies
 - Task 53 (Eurosun)
 - SolarHybrid (UIBK)
 - Yazaki UIBK cooperation
- Summary

Introduction

- Assessment Tool was developed for
 - Technical & Economic key figures
 - Bivalent heating & cooling systems
 - Solar thermal and PV driven
 - Based on IEA SHC Tasks 38/44/48
- Collection of basic information for components
 - T53 Standard & specific calculation
 - Standardized conversion factors
 - Economics / investment costs

NEYER

Task53 Meeting, Messina, 2017/04/19-20

Slide: 3

universität innsbruck

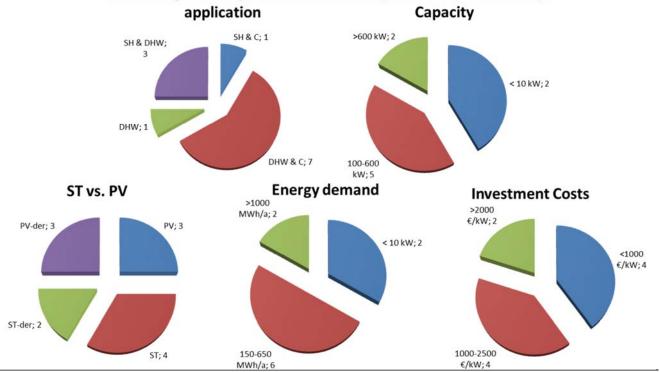
Technical key figures

- Assessment based on (monthly) energy balances
- Non-renewable primary energy ratio (PER_{NRE})
 - Space heating, cooling, domestic hot water, etc.
 - \bullet E.g. ϵ_{el} = 0.4 kWh/kWh_{PE} / ϵ_{EC} = 0.9 kWh/kWh_{PE}
- Fractional savings (fsav_{PRE-NRE})
 - Compared with REF System
 - T53 standard: natural Gas / air cooled VCC

$$PER_{i} = \frac{\sum Q_{i,out}}{\sum \left(\frac{Q_{el,i,in}}{\varepsilon_{el}} + \frac{Q_{i,in}}{\varepsilon_{in}}\right)} \qquad f_{sav.PER} = 1 - \frac{PER_{NRE.ref}}{PER_{NRE.SHC}}$$

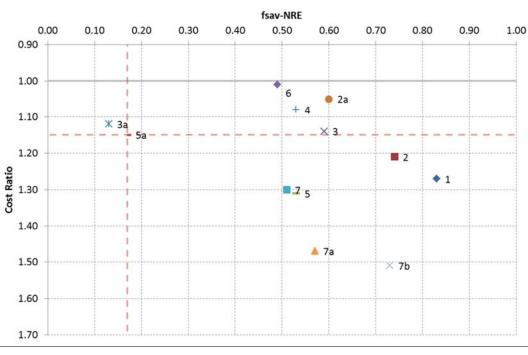
Indicative Economic Analysis

- Based on averaged cut-off costs
- Method & input values base on VDI- and EN-standards
- Under consideration of
 - Investment, Replacement & residual value, Maintenance & service and operational costs (energy, water)
- Levelized costs of energy
 - SHC and Reference system
- Cost Ratio (CR) $cost ratio = \frac{levelized \ costs \ SHC}{levelized \ cost \ REF}$


NEYER

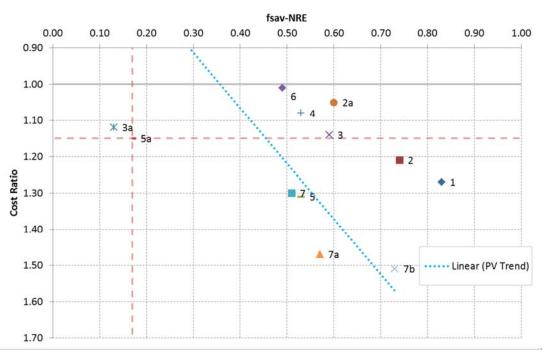
Task53 Meeting, Messina, 2017/04/19-20

Slide: 5


Survey of 7 plants in T53 (status 09/2016)

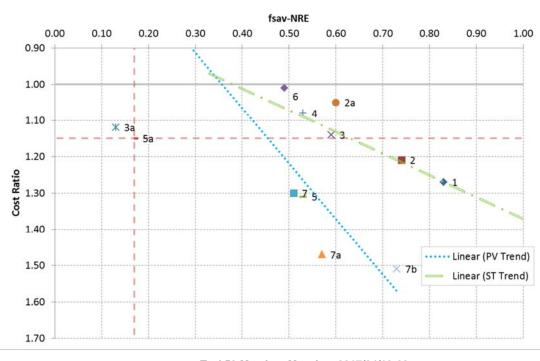
NEYER

Costs vs. non-renewable primary energy savings


NEYER Task53 Meeting, Messina, 2017/04/19-20 Slide: 7

Arbeitsbereich

Energieeffizientes Bauen universität innsbruck



By trend PV vs. ST

By trend PV vs. ST

NEYER Task53 Meeting, Messina, 2017/04/19-20 Slide: 9

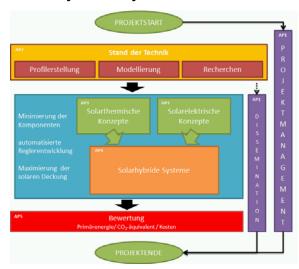
Arbeitsbereich

Energieeffizientes Bauen

universität innsbruck

SolarHybrid

- Austrian research project by
 - University of Innsbruck
 - University of applied sciences Upper Austria (ASIC)
 - Engie Kältetechnik GmbH (former Cofely)
 - Pink GmbH



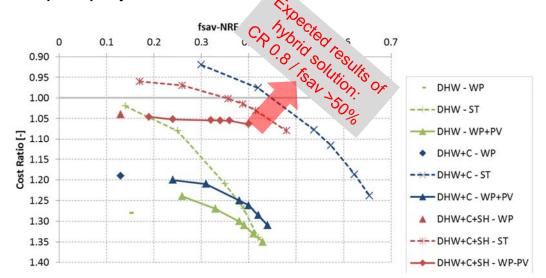
Solar Hybrid

- Main objective is the development and evaluation of economics and efficiency of solar hybrid systems
 - Development of adapted components, measurement of these by means of hardware-inthe-loop tests
 - Preforming of Simulations to optimize the hybrid system
 - Achievement of a max. efficiency through innovative control concepts
 - Cost savings by reduction of components
 - Holistic assessment of thermally and electrically driven systems

NEYER

Task53 Meeting, Messina, 2017/04/19-20

Slide: 11



universität innsbruck

SolarHybrid – selected results

 TRNSYS simulation results for ST system vs. PV driven heat pump system for HOTF profile in Innsbruck

Conclusions (i)

- Task53 Tool allows
 - Comprehensive assessment of SHC plants
 - Benchmark under standardized factors
 - Benchmark against other renewable technologies
 - Simplified comparison of different applications and technologies
- 7 plants up to now in T53 comparison!
- New results from
 - TheBat, SolPol-4/5, SolarHybrid, Yazaki,...

NEYER

Task53 Meeting, Messina, 2017/04/19-20

Slide: 13

universität innsbruck

Conclusions (ii)

- PV and ST driven systems equal in trends of
 - > 50% non-renewable primary energy savings
 - Cost Ratio > 1
 - Higher solar fractions (savings) → higher costs
- Cost
 - Priority on reduction of investment cost
 - (electrical) efficiency less important
 - → SHC systems can get cost competitive!

We NEED YOUR INPUTS and more benchmarks ...join activity C3 and provide data... Show up together in SWC/SHC/SAC

Thank you for your attention!

Daniel Neyer

University of Innsbruck Unit Energy Efficient Buildings Technikerstr. 13 6020 Innsbruck

daniel.neyer@uibk.ac.at

0043 512 507- 63652

NEYER

Task53 Meeting, Messina, 2017/04/19-20

Slide: 15