


INFO Sheet A09

Description:	Definition of reference solar combisystem, Germany
Date:	23.03.2018, revised 10.04.2018 ¹
Authors:	Stephan Bachmann (ITW Stuttgart), Stephan Fischer (ITW Stuttgart), Bernd Hafner (RHC-Platform)
Download possible at:	http://task54.iea-shc.org/

Introduction

This document describes the reference solar combisystem for domestic hot water preparation and space heating in Germany. The system is modelled with TRNSYS to calculate the fuel consumption and electric energy needed to provide the required domestic hot water and space heating as well as the substituted fuel provided by the combisystem. Using this result the levelized costs of heating (LCOH) for the substituted fuel is calculated using Eq. 1 and the reference costs for the investment of the system, installation costs, fuel and electricity costs.

Hydraulic Scheme of the System

Levelized Cost of Heat (LCoH)

LCoHs solar part without VAT	0.206 €/kWh
LCoHc conventional part without VAT	0.119 €/kWh
LCoHo complete system without VAT	0.140 €/kWh

Details of the System

Location	Germany, Würzburg
Type of system	combisystem
Weather data including	test reference year (TRY Würzburg)
- Hemispherical irradiance on horizontal surface	$\Sigma G_{hem,hor} = 1118.8 \text{ kWh}/(\text{m}^2 \text{ a})$
- Beam irradiance on horizontal surface	$\Sigma G_{\text{beam,hor}} = 550.1 \text{ kWh/(m2 a)}$
- Diffuse irradiance on horizontal surface	$\Sigma G_{diff,hor} = 568.7 \text{ kWh/m}^2 \text{ a}$
- Ambient temperature	$T_{amb,av} = 9.0 \text{ °C}$
in hourly values	
Collector orientation	
- Collector tilt angle to horizontal	45 °
- South deviation of collector	south = 0°
- Ground reflectance	0.2
- Resulting hemispherical irradiance on tilted	
surface	$\Sigma G_{hem,tilt}$ =1229.8 kWh/(m ² a)
Load information including	
- Heat demand space heating	9090 kWh/a /1/
- Tapping profile	EU-tapping profile L (4254 kWh/a) /2/
- Store heat losses	2041 kWh
- Tapping temperature	55°C according EU tapping profile
 Average inlet temperature of cold water 	10°C
- Cold water inlet temperature amplitude	ОК
Collector information based on gross area	TRNSYS-type 132
Number of collectors	6
Number of collectors Collector area of one collector	2.5 m ²
Number of collectors Collector area of one collector Maximum collector efficiency	2.5 m ² 0.684
Number of collectors Collector area of one collector Maximum collector efficiency Incidence angle modifier for direct irradiance b ₀	2.5 m ²
Number of collectors Collector area of one collector Maximum collector efficiency Incidence angle modifier for direct irradiance b ₀ Incidence angle modifier for diffuse Irradiance	2.5 m ² 0.684
Number of collectors Collector area of one collector Maximum collector efficiency Incidence angle modifier for direct irradiance b ₀	2.5 m ² 0.684 0.2 0.91 3.51 W/(m ² K)
Number of collectorsCollector area of one collectorMaximum collector efficiencyIncidence angle modifier for direct irradiance b0Incidence angle modifier for diffuse Irradiance	2.5 m ² 0.684 0.2 0.91 3.51 W/(m ² K) 0.011 W/(m ² K ²)
Number of collectorsCollector area of one collectorMaximum collector efficiencyIncidence angle modifier for direct irradiance boIncidence angle modifier for diffuse IrradianceLinear heat loss coefficient	2.5 m ² 0.684 0.2 0.91 3.51 W/(m ² K)
Number of collectorsCollector area of one collectorMaximum collector efficiencyIncidence angle modifier for direct irradiance boIncidence angle modifier for diffuse IrradianceLinear heat loss coefficient2nd order heat loss coefficient	2.5 m ² 0.684 0.2 0.91 3.51 W/(m ² K) 0.011 W/(m ² K ²) 8.0 kJ/(m ² K) TRNSYS-type 340
Number of collectorsCollector area of one collectorMaximum collector efficiencyIncidence angle modifier for direct irradiance bookIncidence angle modifier for diffuse IrradianceLinear heat loss coefficient2nd order heat loss coefficientEffective heat capacityHeat store parametersHeat store volume	2.5 m ² 0.684 0.2 0.91 3.51 W/(m ² K) 0.011 W/(m ² K ²) 8.0 kJ/(m ² K) TRNSYS-type 340 800 I
Number of collectorsCollector area of one collectorMaximum collector efficiencyIncidence angle modifier for direct irradiance b0Incidence angle modifier for diffuse IrradianceLinear heat loss coefficient2nd order heat loss coefficientEffective heat capacityHeat store parameters	2.5 m ² 0.684 0.2 0.91 3.51 W/(m ² K) 0.011 W/(m ² K ²) 8.0 kJ/(m ² K) TRNSYS-type 340
Number of collectorsCollector area of one collectorMaximum collector efficiencyIncidence angle modifier for direct irradiance bookIncidence angle modifier for diffuse IrradianceLinear heat loss coefficient2nd order heat loss coefficientEffective heat capacityHeat store parametersHeat store volumeAuxiliary volume for DHW preparationStore inner diameter	2.5 m ² 0.684 0.2 0.91 3.51 W/(m ² K) 0.011 W/(m ² K ²) 8.0 kJ/(m ² K) TRNSYS-type 340 800 I
Number of collectorsCollector area of one collectorMaximum collector efficiencyIncidence angle modifier for direct irradiance bookIncidence angle modifier for diffuse IrradianceLinear heat loss coefficient2nd order heat loss coefficientEffective heat capacityHeat store parametersHeat store volumeAuxiliary volume for DHW preparationStore inner diameterRel. height of solar inlet	2.5 m ² 0.684 0.2 0.91 3.51 W/(m ² K) 0.011 W/(m ² K ²) 8.0 kJ/(m ² K) TRNSYS-type 340 800 I 424 I
Number of collectorsCollector area of one collectorMaximum collector efficiencyIncidence angle modifier for direct irradiance b0Incidence angle modifier for diffuse IrradianceLinear heat loss coefficient2nd order heat loss coefficientEffective heat capacityHeat store parametersHeat store volumeAuxiliary volume for DHW preparationStore inner diameterRel. height of solar inletRel. height of solar outlet	2.5 m ² 0.684 0.2 0.91 3.51 W/(m ² K) 0.011 W/(m ² K ²) 8.0 kJ/(m ² K) TRNSYS-type 340 800 I 424 I 0.79
Number of collectorsCollector area of one collectorMaximum collector efficiencyIncidence angle modifier for direct irradiance b0Incidence angle modifier for diffuse IrradianceLinear heat loss coefficient2nd order heat loss coefficientEffective heat capacityHeat store parametersHeat store volumeAuxiliary volume for DHW preparationStore inner diameterRel. height of solar outletRel. height of auxiliary inlet	2.5 m ² 0.684 0.2 0.91 3.51 W/(m ² K) 0.011 W/(m ² K ²) 8.0 kJ/(m ² K) TRNSYS-type 340 800 l 424 l 0.79 0.4
Number of collectorsCollector area of one collectorMaximum collector efficiencyIncidence angle modifier for direct irradiance b0Incidence angle modifier for diffuse IrradianceLinear heat loss coefficient2nd order heat loss coefficientEffective heat capacityHeat store parametersHeat store volumeAuxiliary volume for DHW preparationStore inner diameterRel. height of solar inletRel. height of solar outlet	2.5 m ² 0.684 0.2 0.91 3.51 W/(m ² K) 0.011 W/(m ² K ²) 8.0 kJ/(m ² K) TRNSYS-type 340 800 I 424 I 0.79 0.4 0.04
Number of collectorsCollector area of one collectorMaximum collector efficiencyIncidence angle modifier for direct irradiance b0Incidence angle modifier for diffuse IrradianceLinear heat loss coefficient2nd order heat loss coefficientEffective heat capacityHeat store parametersHeat store volumeAuxiliary volume for DHW preparationStore inner diameterRel. height of solar outletRel. height of auxiliary inlet	2.5 m ² 0.684 0.2 0.91 3.51 W/(m ² K) 0.011 W/(m ² K ²) 8.0 kJ/(m ² K) TRNSYS-type 340 800 l 424 l 0.79 0.4 0.04 0.9
Number of collectorsCollector area of one collectorMaximum collector efficiencyIncidence angle modifier for direct irradiance bookIncidence angle modifier for diffuse IrradianceLinear heat loss coefficient2nd order heat loss coefficientEffective heat capacityHeat store parametersHeat store volumeAuxiliary volume for DHW preparationStore inner diameterRel. height of solar outletRel. height of auxiliary inletRel. height of auxiliary outlet	2.5 m ² 0.684 0.2 0.91 3.51 W/(m ² K) 0.011 W/(m ² K ²) 8.0 kJ/(m ² K) TRNSYS-type 340 800 I 424 I 0.79 0.4 0.9 0.47
Number of collectorsCollector area of one collectorMaximum collector efficiencyIncidence angle modifier for direct irradiance b0Incidence angle modifier for diffuse IrradianceLinear heat loss coefficient2nd order heat loss coefficientEffective heat capacityHeat store parametersHeat store volumeAuxiliary volume for DHW preparationStore inner diameterRel. height of solar inletRel. height of solar outletRel. height of solar outletRel. height of auxiliary outletRel. height of space heating inlet	2.5 m ² 0.684 0.2 0.91 3.51 W/(m ² K) 0.011 W/(m ² K ²) 8.0 kJ/(m ² K) TRNSYS-type 340 800 I 424 I 0.79 0.4 0.9 0.4 0.9 0.47 0.2

INFO Sheet A09

Reference System, Germany Solar Combisystem for Single-Family House

Rel. height of sensor for aux. charging	0.6
Rel. height of sensor for space heating	0.45
preheating	0.15
Rel. height of sensor for collector loop	0.2
Set temperature for DHW	62.5 °C
Temperature difference space heating preheat	4 K
on	
Temperature difference space heating preheat	2 К
off	
Overall heat loss capacity rate of store	4.4 W/K
Effective vertical conductivity	1.2 W/(mK)
Heat transfer capacity rate of solar loop HX	$(kA)_{WT,Sol} = 165,9 \cdot \dot{m}^{0,283} \cdot \vartheta_m^{0,524} [W/K]$
Heat transfer capacity rate of hot water HX	$(kA)_{WT,HW} = 75.8 \cdot \dot{m}^{0.252} \cdot \vartheta_m^{1.026} [W/K]$
Volume solar loop HX	11.8
Volume hot water HX	38.51
Maximum heat store temperature	90 °C
Ambient temperature of heat store	15 °C
Solar thermal controller and hydraulic piping	
Total pipe length of collector loop	20 m
Inner diameter of collector loop pipe	20 mm
Temperature difference collector start-up	6 К
Temperature difference collector shut-off	4 K
Electric power of solar thermal controller	3 W
Operating hours of solar thermal controller per	8760 h
year	
Electric consumption of controller per year	26.3 kWh
Electric power of solar loop pump	55 W
Operating hours of solar loop pump	1073 h
Electric consumption of solar loop pump	59 kWh
Electric consumption of other el. components	-
Conventional system	
Type of auxiliary heating	Gas condensing boiler
Boiler capacity	19 kW
Mass flow	1090 kg/h (delT = 15 K)
Efficiency factor of boiler	0.9
Electric power of controller	3 W
Operating hours of controller per year	8760
Electric consumption of controller per year	26.3 kWh
Electric power of pump	55 W
Operating hours of pump (aux. heating + space	3987 h
heating)	
Electric consumption of pump per year	219 kWh
Investment costs I ₀	5500€

INFO Sheet A09	INFO	Sheet	A09
-----------------------	------	-------	-----

Investment costs solar thermal system	
Solar thermal collector, heat store, solar	8000 € /5/
thermal controller solar thermal hydraulic	
components	
	2000 0 /7 /
Installation	2000€/5/
Credit conventional heat store and share of	-1000€
installation	0000 0
Overall investment costs solar thermal part I ₀	9000€
Operation costs conventional part per year	2742 1/10/6/2
Auxiliary heat demand hot water Fuel demand hot water	3743 kWh/a
	4159 kWh/a
Heat demand space heating	7506 kWh/a
Fuel demand space heating	8340 kWh/a
Fuel demand hot water + space heating E _t	12499 kWh/a
Cost per kWh fuel (gas)	0.066 € kWh/a /4/
Fuel costs	825 €/a
Electricity demand	246 kWh/a
Cost per kWh electric energy /4/	0.254 €
Electricity costs	62 €/a
Maintenance costs	200 €/a /3/
Gas meter	130 €/a /3/
Yearly operation and maintenance cost	1217€
conventional part C _t	
Operation costs solar part per year	
Electricity demand	85 kWh/a
Cost per kWh electric energy /4/	0.254 €
Electricity costs	22 €/a
Maintenance costs ($I_0 * 2\%$)	180 €/a
Yearly operation and maintenance cost solar	202 €/a
part C _t	
Fractional energy savings with credit for 150l-	20.2 %
store, UA=2,05 W/K	
Saved final energy (year t) E _t	3162 kWh
Type of incentives	None
Amount of incentives	0€
Lifetime of system	20 year
Discount rate r	0%
Inflation rate	0 %
Corporate tax rate TR	0 %
Asset depreciation (year t) DEP _t	0€
Subsidies and incentives (year t) St (considered	0€
in I ₀)	

INFO Sheet A09

Residual value RV	0€
Discount rate r	0 %
VAT rate	19 %

Calculation of levelized cost LCoH:

$$LCoH = \frac{I_0 - S_0 + \sum_{t=1}^{T} \frac{C_t (1 - TR) - DEP_t \cdot TR}{(1 + r)^t} - \frac{RV}{(1 + r)^T}}{\sum_{t=1}^{T} \frac{E_t}{(1 + r)^t}}$$
(1)

Where:

LCoH: levelized cost of heat in €/kWh I_0 : initial investment in € S_0 : subsidies and incentives in € C_t : operation and maintenance costs (year t) in € *TR*: corporate tax rate in % DEP_t : asset depreciation (year t) in \in RV: residual value in \in E_t : saved final energy (year t) in kWh r: discount rate in % T: period of analysis in years

Annex: Comparison to figures published in Solar Heat Worldwide

To compare the above presented LCoHs based on the saved final energy with the LCoH_{SHWW} presented in Solar Heat World Wide based on the collector yield the following table is presented

Collector yield (year t) E _t	4541 kWh
LCoH _{sHww} solar part without VAT	0.124 €/kWh

References

[1] EN 12977-2 (2012): "Thermal solar systems and components – Custom built systems – Part 2: Test methods for solar water heaters and combisystems".

[2] COMMISSION DELEGATED REGULATION (EU) No 812/2013, ANNEX VII.

[3] Hafner, B. (2016): "E-Mail". Dated 13.06.2016.

[4] Check24 (2016): "Würzburg reference costs". URL: <u>www.check24.com</u> (accessed in Sept. 2016).

[5] Mean values of evaluated invoices, supplied by Bafa.

[6] Louvet, Y., Fischer, S. et. al. (2017): *"IEA SHC Task 54 Info Sheet A1: Guideline for levelized cost of heat (LCOH) calculations for solar thermal applications"*. URL: <u>http://task54.iea-shc.org/.</u>

[7] Louvet, Y., Fischer, S. et.al. (2017): "Entwicklung einer Richtlinie für die Wirtschaftlichkeitsberechnung solarthermischer Anlagen: die LCoH Methode". Symposium Thermische Solarenergie, Bad Staffelstein.

¹ To avoid confusion with the results of other works ([1], [8], [9]) also using the notion of LCoH for solar thermal systems, new acronyms were introduced in this Info Sheet. As previous studies have considered different assumptions for the definition of the terms of the LCoH equation, it does not make sense to compare the values they obtained with the LCoHs, LCoHc and LCoHo values defined here. A detailed explanation of the differences between the approaches chosen in the framework of IEA-SHC Task 54 and in the Solar Heat Worldwide report [9] can be found in Info Sheet A13 [10].