Kaiserstraße 7, Vienna

1. INTRODUCTION

PROJECT SUMMARY

- Year of construction: 1904 Monastery, which is part of a square building complex that includes a church and a residential building. The complete complex is monument protected.

SPECIAL FEATURES

- Listed building
- Interior insulation
- Central ventilation system
- Innovative window solution based on box-type windows

ARCHITECT akp architects, Vienna

Consultant e7, Vienna

OWNER: Lazarists*

* Congregation of the Mission of the Holy Vincent de Paul

Walter Hüttler, Johannes Rammerstorfer

walter.huettler@e-sieben.at

IEA SHC Task 47

Renovation of Non-Residential Buildings towards Sustainable Standards

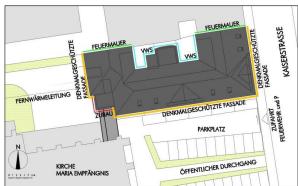
2. CONTEXT AND BACKGROUND

BACKGROUND

- Monastery building with residential use on the top floors
- Building is part of a listed square ensemble (including a church and a residential building) in use
- 4 floors attic floor not in use (before renovation)
- District heating

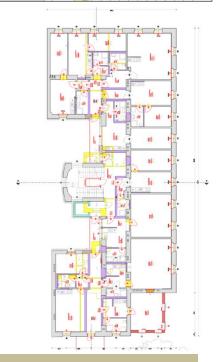
OBJECTIVES OF THE RENOVATION

- Multiple use monastery and residential
- · Attic conversion
- · Improvement of energy efficiency
- Innovative measures
 - Interior insulation
 - Ventilation system with heat recovery
 - Renovation of boxed-type windows (sustainment of appearance)
- Hazard assessment of possible consequences of interior insulation for facade damage.


SUMMARY OF THE RENOVATION

- · Flagship building
- Improvement of energy efficiency and comfort
- Continuous monitoring of energy consumption and façade humidity

Street view before...


Floor plan

...and after renovation

Pictures: Architekten Kronreif_Trimmel&Partner http://www.architekten.or.at/

3. DECISION MAKING PROCESSES

Building

The complex is owned by the Lazarists. Main incentives for the renovation were the required renovation of the façade as well as the wish to improve comfort and to reduce energy consumption.

Architect

Extensive experience in the field of refurbishing historical and listed buildings enabled the development of an innovative concept.

Public funding

... which could be realized through funding by the federal research program "building of tomorrow" (<u>www.hausderzukunft.at</u>)

The project was included as a demonstration project in the lead-project "Gründerzeit mit Zukunft" (www.gruenderzeitplus.at), which deals especially with the renovation of historical buildings (before 1919).

Historical dormer before and after renovation

Pictures: Architekten Kronreif Trimmel&Partner

Insulation on fire-proof walls and interior insulation

Pictures: Architekten Kronreif_Trimmel&Partner

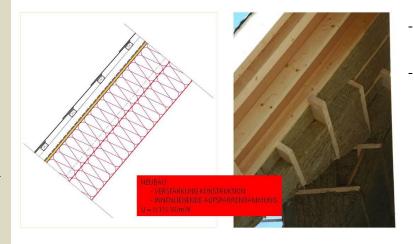
4. BUILDING ENVELOPE

Roof construction: *U-value: 0,157 W/m²K*

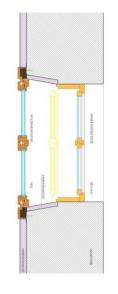
Materials . (Interior to exterior):

Gypsum cardboards 25 mm Moisture barrier + air space 27 mm Plywood 15 mm Rock wool insulation 320 mm Plywood 24 mm Air space 80 mm Lathing 30 mm Roof brick (to be sustained) Total 534 mm

Wall construction: U-value: 0,436 W/m²K


Materials . (Interior to exterior):

Filling


Capillary-active mineral insulation
Chalk-cement plastering
Brick
Ø 600 mm
Chalk-cement plastering
Total
710 mm

Summary of U-values [W/m²K]

	Before	After
Roof/attic	0,90	0,16
Floor/slab	1,07	-
Walls	0,92	0,44
Ceilings		
Windows	2,20	0,90

- Cross section of roof construction
- Insulation is to be mounted interior to sustain the roof bricks

- Left: window construction in combination with interior insulation
- Right: Construction with 5cm calcium silicate panel
 (the accumulation of humidity in the wall construction is monitored)

Pictures: Architekten Kronreif_Trimmel&Partner

5. BUILDING SERVICES SYSTEM

OVERALL DESIGN STRATEGY

HEATING SYSTEM

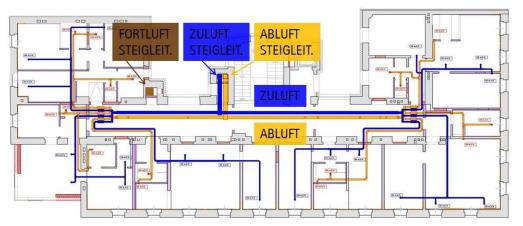
- Before: district heating (radiators)
- After: district heating
 - radiators in the lower floors
 - space heating in the upper floors

VENTILATION

- Before: natural ventilation (no mechanical systems)
- After: mechanical ventilation system with heat recovery in 2nd, 3rd floor and attic conversion; the air handling unit is installed in the basement

HOT WATER PRODUCTION

- Before: central (district heating)
- After: central for the lower floors; decentralized for the upper floors

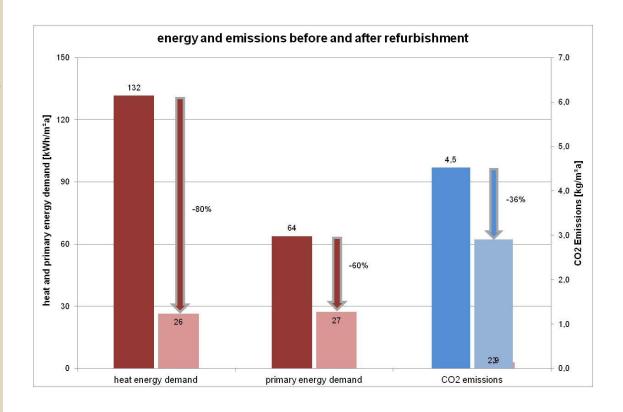

Air ducts in the suspended ceiling with sound absorbers

Decentralized domestic warm water preparation

Cross floor plan 3rd floor (ventilation system)

Pictures: Architekten Kronreif_Trimmel&Partner

6. ENERGY PERFORMANCES


Energy performance (kWh/m²)
 Good energy performance was achieved by reducing the heat losses through walls and windows of the building stock, a high standard attic conversion, innovative window solution and installing a ventilation system with heat recovery

The calculated heat demand is reduced to about 26 kWh/m²a, which means a reduction of the specific demand of almost 80%

Even comfort and convenience in use could be increased significantly – and therefore additional energy flows for ventilation could occur – the primary energy demand could be reduced by 60%

The building is provided with district heating, which has a positive effect on the primary energy demand and CO2 emissions

Heating- and primary energy demand and CO2- emissions

7 ENVIRONMENTAL PERFORMANCE

The building is going to receive the certificate for sustainable building (TQB - Total-Quality- Building) by the Austrian Sustainable Building Council (ÖGNB – www.oegnb.net)

Main criteria of the certificate cover

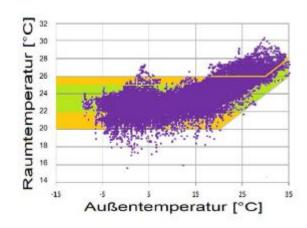
- · energy performance
- · ecological materials
- · Life-cycle cost

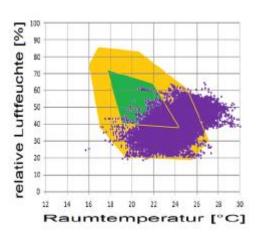
The indoor climate of the residences is monitored and evaluated for a two-year period

Energy consumption and hot water demand is monitored and evaluated for a two-year period

Social evaluation

- to be evaluated one year after completion (autumn 2014)
- satisfaction with the building / with the dwelling
- · satisfaction with the technical equipment


Monitoring hardware in a demonstration object


Picture: e7 (http://www.e-sieben.at/)

Monitoring of comfort criteria (15min period)

- Left picture: room temperature against ambient temperature
- Right picture: humidity against room temperature

8. MORE INFORMATION

OTHER INTERESTING ASPECTS

The project is included in the leadproject "Gründerzeit mit Zukunft" (<u>www.gruenderzeitplus.at</u>) (Gründerzeit with future: Innovative Modernisation of Wilhelminian Style Buildings)

The project is focusing on the holistic modernization of houses of the era of promodernism (year of construction before 1919). Four demonstration buildings are located in Vienna.

The key aspects are:

- economic efficiency
- energy efficiency
- legal framework
- users satisfaction

Wißgrillgasse (Wißgrill Alley) before and after comprehensive reconstruction and attic expansion

Pictures: Ulreich, Gassner & Partner

Eberlgasse (Eberl Alley)

- First modernization of a historic building to passive house standard
- water/water heat pump
- air ventilation system

Picture: e7

Davids Corner

- Modernization of three historic buildings located next to each other

Picture: BLUESAVE (www.bluesave.at)

