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Preface 

INTRODUCTION TO THE INTERNATIONAL 
ENERGY AGENCY 

 
 

BACKGROUND 
The International Energy Agency (IEA) was established in 1974 as an autonomous agency within 

the framework of the Economic Cooperation and Development (OCDE) to carry out a comprehensive 
program of energy cooperation among its 25 member countries and the Commission of the European 
Communities. 

An important part of the Agency’s program involves collaboration in the research, development 
and demonstration of new energy technologies to reduce excessive reliance on imported oil, increase 
long-term energy security and reduce greenhouse gas emissions. The IEA’s R&D activities are headed 
by the Committee on Energy Research and Technology (CERT) and supported by a small Secretariat 
staff, headquartered in Paris. In addition, three Working Parties are charged with monitoring the 
various collaborative energy agreements, identifying new areas for cooperation and advising the 
CERT on policy matters. 

Collaborative programs in the various energy technology areas are conducted under 
Implementing Agreements, which are signed by contracting parts (government agencies or entities 
designated by them). There are currently 42 Implementing Agreements covering fossil fuel 
technologies, renewable energy technologies, efficient energy end-use technologies, nuclear fusion 
science and technology, and energy technology information centers. 

SOLAR HEATING AND COOLING PROGRAM 
The Solar Heating and Cooling program was one of the first IEA Implementing Agreements to be 

established. Since 1977, its 21 members have been collaborating to advance active solar, passive solar 
and photovoltaic technologies and their application in buildings. 

The members are: 

Australia Finland Norway 
Austria France Portugal 
Belgium Italy Spain 
Canada Japan Sweden 
Denmark Mexico Switzerland 
European Commission Netherlands United Kingdom 
Germany New Zealand United States 

 

A total of 30 Tasks have been initiated, 21 of which have been completed. Each Task is managed by 
an Operating Agent from one of the participating countries. Overall control of the program rests with 
an Executive Committee comprised of one representative from each contracting party to the 



 

  

Implementing Agreement. In addition, a number of special ad hoc activities – working groups, 
conferences and workshops – have been organised. 

The Tasks of the IEA Solar Heating and Cooling Programme, both completed and current, are as 
follows: 

Completed Tasks 
Task 1 Investigation of the Performance of Solar Heating and Cooling Systems 
Task 2 Coordination of Solar Heating and Cooling R&D 
Task 3 Performance Testing of Solar Collectors 
Task 4 Development of an Insolation Handbook and Instrument Package 
Task 5 Use of Existing Meteorological Information for Solar Energy Application 
Task 6 Performance of Solar Systems Using Evacuated Solar Collectors 
Task 7 Central Solar Heating Plants with Seasonal Storage 
Task 8 Passive and Hybrid Solar Low Energy Buildings 
Task 9 Solar Radiation and Pyranometry Studies 
Task 10 Solar Materials R&D 
Task 11 Passive and Hybrid Solar Commercial Buildings 
Task 12 Building Energy Analysis and Design Tools for Solar Applications 
Task 13 Advance Solar Low Energy Buildings 
Task 14 Advanced Active Solar Energy Systems 
Task 16 Photovoltaics in Buildings 
Task 17 Measuring and Modelling Spectral Radiation 
Task 18 Advanced Glazing and Associated Materials for Solar and Building 

Applications 
Task 19 Solar Air Systems 
Task 20 Solar Energy in Buildings Renovation 
Task 21 Daylight in Buildings 
Task 23 Optimisation of Solar Energy Use in Large Buildings 

 

Completed Working Groups 
CSHPSS 
ISOLDE 
Materials in Solar Thermal Collectors 
Evaluation of Task 13 Houses 

 
Current Tasks 

Task 22 Building Energy Analysis Tools 
Task 24 Solar Procurement 
Task 25 Solar Assisted Cooling Systems for Air Conditioning of Buildings 
Task 26 Solar Combisystems  
Task 27 Performance of Solar Façade Components 
Task 28 Solar Sustainable House 
Task 29 Solar Crop Drying 
Task 31 Daylighting Buildings in the 21st Century 
Task 32 Advanced Storage Concepts for Solar Thermal Systems in Low Energy 

Buildings (Task Definition Phase) 
Task 33 Solar Heat for Industrial Process (Task Definition Phase) 

 

Current Working Groups 
PV/Thermal Systems 



 

 

 

TASK 22 : BUILDING ENERGY ANALYSIS TOOLS 

Goal and Objectives of the task 
The overall goal of the task 22 is to establish a sound technical basis for analysing solar, low-

energy buildings with available and emerging energy analysis tools. This goal will be pursued by 
accomplishing the following objectives: 

− Assess the accuracy of available building energy analysis tools in predicting the 
performance of widely used solar and energy efficiency concepts; 

− Collect and document engineering models of widely used solar and low-energy concepts 
for use in the next generation building energy analysis tools; and 

− Assess and document the impact (value) of improved building analysis tools in analysing 
solar, low-energy buildings, and widely disseminate research results tools, industry 
associations and government agencies. 

Scope of the task 
This Task will investigate the availability and accuracy of building energy analysis tools and 

engineering models to evaluate the performance of solar and low-energy buildings. The scope of the 
Task is limited to whole building energy analysis tools, including emerging modular type tools, and 
to widely used solar and low-energy design concepts. Tool evaluation activities will include 
analytical, comparative and empirical methods, with emphasis given to blind empirical validation 
using measured data from test rooms or full scale buildings. Documentation of engineering models 
will use existing standard reporting formats and procedures. The impact of improved building energy 
analysis tools will be assessed from a building owner perspective. 

The audience for the results of the Task is building energy analysis tool developers. However, tool 
users, such as architects, engineers, energy consultants, product manufacturers, and building owners 
and managers, are the ultimate beneficiaries of the research, and will be informed through targeted 
reports and articles. 

Means 
In order to accomplish the stated goal and objectives, the Participants will carry out research in the 

framework of two Subtasks: 

Subtask A: Tool evaluation 

Subtask B: Model Documentation 

Participants 
The participants in the Task are: Finland, France, Germany, Spain, Sweden, Switzerland, United 

Kingdom, and United States. The United States serves as Operating Agent for this Task, with Michael 
Holtz of Architectural Energy Corporation providing Operating Agent services on behalf the U.S. 
Department of Energy. 

This report includes works carried out under the Subtask A.3, Empirical Validation. 



 

  



 

 

 
 

  

CONTENTS 
 

MODEL VALIDATION MEANINGS AND STATE-OF-THE-ART ............................... 1 

1.1. Model validation meanings ....................................................................................................................... 1 

1.2. State of the art in empirical model validation ......................................................................................... 3 
Checking model validity ................................................................................................................................. 3 
Modelling errors diagnosis.............................................................................................................................. 4 

INTERNATIONAL ENERGY AGENCY  EMPIRICAL MODEL VALIDATION 
APPROACH : THEORY AND COMPUTER IMPLEMENTATION.............................. 7 

2.1. General overview of the methodology...................................................................................................... 7 
Checking model validity ................................................................................................................................. 7 
Model diagnosis .............................................................................................................................................. 8 

2.1. Models, measurements and uncertainties ................................................................................................ 9 
Thermal models for buildings ......................................................................................................................... 9 
Measurements ............................................................................................................................................... 10 
Uncertainties ................................................................................................................................................. 10 

2.2. Checking the model validity.................................................................................................................... 12 
Relevant characteristics of the residuals ....................................................................................................... 12 
Simulations-measurements consistency analysis .......................................................................................... 13 
Spectral domain of applicability ................................................................................................................... 15 

2.3. Active model parameters identification, correlation analysis and preliminary diagnosis ................ 16 
Sensitivity calculation methods..................................................................................................................... 16 
Active model parameters identification and correlations analysis ................................................................ 18 
Principal components analysis and preliminary diagnosis............................................................................ 19 

2.4. Free model parameters estimation and diagnosis ................................................................................. 23 
Gauss-Newton method.................................................................................................................................. 24 
Monte Carlo approach................................................................................................................................... 25 
Heuristic bounding method........................................................................................................................... 27 
Discussion ..................................................................................................................................................... 29 

2.5. An illustrative example............................................................................................................................ 30 
The model and the experimental data ........................................................................................................... 30 
Sensitivity analysis........................................................................................................................................ 32 
Optimisation and diagnosis ........................................................................................................................... 37 

2.6. Computer implementation ...................................................................................................................... 39 
MED.............................................................................................................................................................. 39 
MEDLab ....................................................................................................................................................... 40 

2.7. Summary and conclusion ........................................................................................................................ 40 
 



 

  

APPLICATION TO THE VALIDATION OF THE THERMAL MODEL OF AN 
ACTUAL BUILDING................................................................................................. 43 

3.1. The experimental device.......................................................................................................................... 43 

3.2. The experimental design and the data ................................................................................................... 46 
Test cell configuration and recorded data ..................................................................................................... 46 
Qualitative data analysis ............................................................................................................................... 49 
Spectral analysis of the data.......................................................................................................................... 52 

3.3. The nominal test-cell model .................................................................................................................... 55 
Modelling hypothesis.................................................................................................................................... 55 
The model ..................................................................................................................................................... 55 
Blind model validation.................................................................................................................................. 56 

3.4. Parameters sensitivity analysis ............................................................................................................... 58 
Test cell components..................................................................................................................................... 58 
Whole test cell............................................................................................................................................... 61 
Preliminary diagnosis.................................................................................................................................... 63 

3.5. Free model parameters estimation ......................................................................................................... 65 

3.6. Conclusion ................................................................................................................................................ 68 

 SUMMARY AND CONCLUSIONS.......................................................................... 69 

REFERENCES ......................................................................................................... 71 

ANNEX A. An efficient computational method for solving large-scale differential 
sensitivity problems 

ANNEX B. Validation of two French building energy programs : Part 2 - 
Parameter estimation method applied to empirical validation. 

 
 

 

 



 

 
 
 
 
 

Chapter 1 

MODEL VALIDATION MEANINGS 
AND STATE-OF-THE-ART  

 
 
 

The word “validation” is often misunderstood and has certainly been used in different senses in 
the past. First section in this chapter includes a structured discussion on the different model 
validation meanings, from conceptual models validation to empirical operational models 
validation. Our attention is then focussed on empirical model validation. A state of the art in this 
matter is presented in the last section. 

 
 
 

1.1. MODEL VALIDATION MEANINGS 
Modelling environments and simulation codes have been used for building thermal analysis for 

many decades now. Many simulation programs have over the years been checked to some extent, and 
it is not uncommon for the developers to claim that they have  “validated”  them. The word 
 “validation”  is often misunderstood and has certainly been used in different senses in the past. It is 
often taken to mean a once and for all time check of the absolute accuracy of a program. In practice, 
the thermal performance of a building is dependent on a very large number of parameters. It would 
be quite impossible to test all feasible combinations of these parameters in order to ensure that the 
model/program is correct, even if the true building performance was known. 

Although it is not possible to validate a model or a simulation code for all kinds of applications, 
correct and carefully performed validation will increase confidence in both. It may also give an 
indication of their reliability, at least for more common cases. In addition, validation plays a dual role 
for the modeller: firstly, as a modelling aid, guiding the choice of an effective model structure and 
associated numerical values with respect to the model specific utilisation; and secondly, as an aid to 
model reuse, by simplifying access to models by a third party. 

Different studies have been carried out in the past with the attempt to establish a methodology for 
model validation. The first study, undertaken by the US Solar Energy Research Institute [1] had 
resulted in a three part methodology including analytical tests, inter-model comparisons, and 
empirical validation. This methodology has further been refined and extended in the second study 
carried out by four British research teams - the University of Nottingham, Leicester Polytechnic, the 
Rutherford Appleton Laboratory and the Building Research Establishment [2]. The methodology 
comprises: theory and source code checking, analytical tests, inter-model comparison, sensitivity 
analysis, and empirical validation. This was the methodology reviewed and accepted at the 
commencement of the CEC Concerted Action PASSYS [3]. In the second phase of PASSYS main 
emphasis was devoted to empirical model validation. The complete description of the resulting 
methodology can be found in [4] and more condensed in [5, 6]. 

A better understanding on what model validation involves can be obtained using the 
“semiological grid” proposed in [7] as a tentative conceptual tool for an efficient and useful 
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description of the modelling process. The  “semiological grid” (see Fig. 1.1) is a five layer structure 
(worlds) describing the main phases of a model development process: 

− Technical world. It is ordinarily here that system is conceptualised, where appearances of 
reality are symbolised. For instance, in a project building, this is where components, identifiers 
and technical questions to be answer have to be specified. 

− Physical world. It is a theoretical layer dealing with physics, where the previous technical 
description is translated into a physical one. It is here that the scale of the analysis, the physical 
phenomena taking place in the system, the laws governing them and the constitutive materials 
laws, etc. has to be specified. 

− Mathematical world. We step down to a more rigorous mathematical formulation. Equations 
governing the space-time evolution of the system state have to be written. A qualitative 
understanding of the processes, relations and structures involved is now accessible. 

− Numerical world. This layer is devoted to computation methods allowing numerical solutions 
of the problem, especially when analytical solutions are not available. It is a very specific world, 
half between mathematics and computers, which was for a long time considered as a sub-layer 
of the previous one. 

− Computer world. The output of the deepest layer is a computerised model allowing 
simulations, data production in general. 

 

Technical

Physical

Mathematical

Numerical

Computing

Reality

Conceptual
Model

Computerised
Model

Conceptual
Validation

Model
Verification

Empirical
Validation

 
Figure 1.1. Main stages in model credibility assessment. 

 
Going from reality to a conceptual model (see Fig.1.1) means stepping down from the technical 

world to the mathematical one. Similarly, translating the conceptual model into a computerised one, 
implies to move down from the mathematical world to the computing one. 

According to the five layers structure before (see Fig.1.1), three main stages in models credibility 
assessment can be recognised: 

− Conceptual Model Validation. Analysis of the adequacy of the conceptual model to provide a 
“reasonable” representation of the system for the intended use of the model. This process is 
usually accomplished by analysis and review of the theories and assumptions underlying the 
conceptual model. It mainly tests the coherence between the conceptual model and the image of 
reality the modeller has, that is, the passage from the technical to the mathematical world. 

− Computerised Model Verification. Substantiation that the computerised model represents the 
conceptual model within specified limits of accuracy. In essence, model verification is for 
insuring that the computer programming and implementation of the conceptual model is 
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correct. Computer scientists have been devoting a great deal of effort to develop design and 
management techniques that minimise coding errors (e.g. structured programming, top-down 
design, chief programming, etc.). Recently, rigorous (formal) design and implementation 
techniques allow for program correctness proof [8]. Analytical test and inter-model 
comparisons are also applied at this stage, as well as special simulation based tests as the ones 
described in [9]. 

− Empirical Operational Model Validation. Empirical validation should in principle compare a 
true model derived from experiments with a computerised model. It is not, as analytical 
validation, limited to isolated processes in simple constructions, but deals with real world 
complexity comparable to situations as encountered when the simulation code is used in design 
studies. Empirical validation is, therefore, the most widely used technique for validating 
transient simulation programs. Beyond any technical consideration, it provides a guarantee of 
users confidence, and enables the modeller to improve his understanding on the system he is 
modelling and to improve the model itself. However, it involves experiments, with the risk that 
the question regarding the reliability of the predictions cannot be answered due to the un-
reliability of the measurements. 

 
Model assessment should be performed throughout the model development process. In this way, 

the risk of observing model deficiencies due to an improperly conceptual model implementation 
should be negligible when performing empirical model validation, the measurements/simulations 
differences reflecting essentially the conceptual model inadequacy. 

We will focus our attention on empirical validation, whose aim is two-fold: 

− Checking model validity. Firstly, one needs to detect if the model is capable of describing the 
reality correctly, that is, to check whether the analysed model satisfies some a priori validation 
criteria. 

− Modelling errors diagnosis. Secondly, the causes of the observed discrepancies between 
measured and predicted values must be identified in order to indicate how to improve the 
analysed model, if required. 

 
This is, however, a non-trivial task to perform, as it requires expertise in experimental design, 

modelling principles and simulations techniques, as well as in special mathematical methods 
involving sensitivity analysis, identification techniques, spectral analysis, and so on. 

1.2. STATE OF THE ART IN EMPIRICAL MODEL VALIDATION 
Comparison between measured and predicted values has often been performed in a very 

subjective way by e.g. comparing a curve showing the measured values with a curve showing the 
predicted values and then by looking at this, stating whether the agreement is satisfactory or not. This 
kind of comparison gives only little information on model validity and on what may cause deviations 
between measurements and predictions. It is necessary to apply more sophisticated techniques in 
order to increase the quality and the confidence in the validation result and to obtain valuable 
information about the model. 

Several mathematical techniques exist for comparison between measured and predicted values, 
testing the goodness of different aspects of the model and trying to identify the causes of 
unsatisfactory model behaviour. 

Checking model validity 
The most commonly used validation criterion is the verification of whether model/data 

discrepancy is smaller than a threshold taking into account of measurements noise and model input 
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data uncertainties. It implies the estimation of the so called ”overall uncertainty bands”, which are a 
measure of the influence that the variations in the model parameters have on the model outputs. 
Three kinds of sensitivity analysis techniques have been used in the past to estimate them: differential 
sensitivity analysis, Monte Carlo methods, and stochastic sensitivity analysis. See e.g. [10] for an 
analysis of their corresponding advantages and drawbacks. 

The agreement between simulations and measurements is stated to be good if the measured values 
fit within the overall uncertainty bands. The advantage of this method is that it is very clear when 
good agreement is obtained, the disadvantage is that it only compare measurements and simulations 
in the low frequency area (daily or less). It does not test the highly dynamic behaviour (hourly) of the 
model. 

Within the CEC funded PASSYS program, some frequency domain analyses on the residuals 
(differences between measurements and simulations) were proposed in order to establish a validation 
criterion for the dynamic behaviour. The most interesting one is based on the analysis of the residuals 
density power spectrum. This statistic represents the residuals variance distribution over frequencies. 
It shows in which frequency ranges the problems in the model mainly appear. When compared with 
the so called ”qualifying density power spectrum”, which represents the allowed upper bound for the 
residuals density power spectrum, frequency areas where the model shows an unsatisfactory 
behaviour are revealed. However a reliable validation criterion should encompass both a measure of 
the measurements noise and a measure of the model expected accuracy including model input data 
uncertainty. 

Modelling errors diagnosis 
Two significant techniques using linear analysis tools have been proposed in the past for 

diagnostic purposes. 

The first one consist in a direct comparison of the system global physical parameters (first time 
constant and static gains) estimated from measurements with the ones calculated by means of the 
analysed model [4, 11]. To obtain such information from experimental data, identification techniques 
can be applied. A dynamic linear model, in state space form [4] or in a black-box form [11], is 
identified on data, and then reduced to its characteristic time constant and its static gains. To get such 
information from the “knowledge” model the use of spectral decomposition techniques has been 
proposed in [11], and a different technique based on simulations in [4]. 

The second technique deals with residuals analysis and was first proposed in [5]. Because model 
simulation aims at reproducing the effect of the external influences that drive the experiment, one 
expects a part of the residuals to be sensitive to these inputs. Hence, the proposed technique seeks to 
quantify the contribution of each input to the residuals. Such information helps modellers to sort the 
inputs and to target the one responsible of the major part of the error. Efforts to improve the model 
should then focus the way model takes into account this particular input. 

The technique proposed in [4, 5] is based on residuals non-parametric spectral analysis. The 
contribution of each input to the residuals is analysed by means of the squared partial coherence 
functions. The squared partial coherence for the ith  input is a normalised measure at frequency ω  of 
the linear cross-correlation existing between residuals and input i  after allowance is made for the 
effect of the other input variables. It takes values from 0 to 1. Zero values mean that no correlation 
exists between the ith  input and the residuals, unity values mean that residuals could be completely 
recovered from this input, and values between 0 and 1 correspond to situations where residuals can 
be partially predicted from the ith  input. Such information helps modellers to sort the inputs and to 
target the one responsible of the major part of the error over a given frequency area. This is the 
method reviewed and accepted in [12, 13], where spectra and partial coherence functions are 
simultaneously used to quantify the contribution of each model input to the residuals variance. 
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The technique proposed in [14] is slightly different, although it also deals with residuals analysis. 
A dynamic linear and stationary MISO (Multiple Inputs Single Output) model is identified on the 
residuals/input data. Such model is intended to predict the residuals time evolution, and it is then 
used to estimate the contribution of each model input to the total variance of the residuals. This error 
disaggregating technique, dealing with the total residuals variance, does not allow separating time-
scales (frequency ranges). It does not provide so rich information than the previous ones. 

Residuals analysis techniques have been widely used in the 90’s, especially in the framework of a 
British-French collaboration - the Building Research Establishment and Électricité de France. 
Although they revealed capable of diagnosing some of the modelling errors, the authors believe them 
to suffer some limitations. The main important ones are: 

− They are based on linear analysis tools. Hence, they cannot be applied for non-linear models 
studies. 

− They can be qualified as black-box approximations to the diagnosis for they are mainly based 
on the analysis of the causal relationships between the residuals and the model inputs. Any 
direct information is supplied concerning the modelling hypothesis to be reviewed and the 
parts to be modified. Frequently, no indications on how to improve models are given by means 
of residuals analysis. For instance, which parts in a test cells model must be modified when a 
strong coherence has been detected between the outdoor temperature and the residuals: 
thermal bridges, convective coefficients, indoor air stratification hypothesis, etc.? Residuals 
analysis brings any answer about. 

 
These limitations lead us to propose another kind of approach for models diagnostic purposes. It is 

based on the analysis of the correlation existing between the different model parameters and the 
residuals observed. The aim of the method is to identify the amplitude of variations in parameters 
allowing significant residuals reduction. The comparisons of such results with the knowledge we 
have about the actual system and the modelling hypothesis will help us to know the reasons of the 
observed modelling errors, and to propose model improvements. 

 



 



 

 
 
 
 
 

Chapter 2 

INTERNATIONAL ENERGY AGENCY EMPIRICAL 
MODEL VALIDATION APPROACH : THEORY AND 

COMPUTER IMPLEMENTATION 
 
 
 

The methodology and the underlying methods we are proposing for empirical model validation 
purposes are presented in this chapter. It first includes a general overview of the methodology, 
from checking model validity to diagnosis. Thermal models for buildings are presented in the 
second section, as well as measurements and uncertainty matters. The third section describes the 
mathematical tools that have been chosen for testing the model validity. Our main contribution 
however concerns diagnosis. A new approach based on the model parameter space analysis has 
been developed. It is described in the two next sections. A simple example of application is 
presented and discussed in the last by one section and last section includes some computer 
implementation matters. 

 
 
 

2.1. GENERAL OVERVIEW OF THE METHODOLOGY 
As pointed out in the previous chapter, the aim of empirical validation is two-fold. Firstly, it 

intends to test the model performances by identification of significant disagreements between 
measurements and simulations (checking model validity). Secondly, it tries to explain such 
disagreements (model diagnosis). This means going up from the observed differences between 
simulations and measurements to the modelling hypothesis that must be modified to improve the 
model. 

Checking model validity 
Testing model validity is based on comparisons between simulations and measurements. Different 

studies have been carried out in the past with the attempt to establish methods for rigorous model 
validity test. In the framework of the IEA Task 22, checking model validity involves: 

− A systematic analysis of the residuals comprising non-stationary patterns detection, mean and 
standard deviation calculation and spectral density function analysis. 

− A comparison between measurements and simulations that takes into account both the 
measurements noise and the model input data uncertainties. The agreement between model 
and reality is stated to be good when a significant overlapping is observed between 
simulations and measurements uncertainty bands. This is today a standard way for 
model/data comparisons (cf. [10, 4]). 
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− The estimation of the spectral domain of application of the model. It defines the frequency 
ranges of excitation where no significant differences between model simulations and 
measurements are expected.  

Model diagnosis 
The diagnosis approach we are proposing is based on the analysis of the model parameters space. 

The main objective is to identify the changes in parameters values that are required for a significant 
model behaviour improvement. Diagnosis is then provided by comparison of such results with the 
knowledge we have about both the actual system and the model itself. 

As stated before, residuals analysis aims to target the model inputs responsible of the major part of 
the differences measures/simulations observed. Contrary to such techniques, parameter space 
analysis focuses its attention on physical phenomena and modelling hypothesis. It must be noticed 
that parameters are the elements of a computerized model that are closest to the represented physical 
phenomena, as well as to the assumed modelling hypothesis. Consequently, it is expected that this 
new approach supplies better information for diagnosis than residuals analysis. In addition, it can be 
applied to both linear and non-linear models. 

Two main stages can be recognized in the methodology that we are proposing (see Fig. 2.1): 

(a) Active model parameters identification and preliminary diagnosis. This is a preliminary and 
fundamental step toward diagnosis. It aims to identify the physical phenomena and the parts 
of the model that can be really tested on the available experimental data. As it is shown later 
(section 2.2), sensitivity analysis is the main mathematical tool for this purpose. It involves: a) 
calculation of the model outputs sensitivity to every model parameter; b) active model 
parameters identification and correlation analysis; and c) sensitivities principal components 
analysis.  

Active model parameters are those to which model outputs are sensitive enough. They are 
related to the mathematical representation of the dominant parts and phenomena in the 
model. Unfortunately, active model parameters are often correlated among each other. Such 
correlations introduce some additional limitations for validation purposes as well as some 
ambiguities for diagnosis. Generally, active model parameters must be grouped and validation 
and diagnosis conclusions will only refer to such groups. There is no way of making 
distinction among parameters in a same group.  

Some useful information concerning diagnosis can also be obtained at this step. As we will se 
later, principal components analysis is the main tool for this purpose. It gives some 
preliminary indications on how active model parameters can be modified to improve model 
performances. 

(b) Optimisation and diagnosis. Parameters estimation techniques are the main mathematical 
tool we are proposing to guide model diagnosis. Free model parameters values allowing 
significant residuals reduction are here identified by fitting the model on the available data. 
Diagnosis mainly involves comparisons between estimated and nominal model parameters 
values. Large differences are expected for parameters related to the physical phenomena that 
are not correctly represented in the model. Different algorithms for optimisation have been 
considered and tested (see section 2.3). 
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Figure 2.1. The main steps toward diagnosis in the proposed methodology. 

2.1. MODELS, MEASUREMENTS AND UNCERTAINTIES 

Thermal models for buildings 
A building is an open and non-adiabatic thermodynamic system that exchanges mass and energy 

with its environment. It can be seen as an ensemble of solid elements (walls, doors, windows, etc.) 
that separate a volume of air from the outdoor environment. The main physical processes 
contributing to the definition of the building thermal state are: 

− heat conduction in the matrix of the solid elements; 

− long-wave radiation exchanges among the indoor surfaces, and between the outdoor surfaces 
and the environment; 

− solar radiation transmission and absorption; 

− convective heat transfer at the surface-air interfaces; and 

− convective heat transfer by air mass transport among building zones, and between every zone 
and the building environment. 

 
Thermal models for buildings can be usually described by finite-dimensional models of the 

general form: 

)),(),(()(
)),(),(()(
θ=
θ=

tUtTtY
tUtTtT

G
F&

       (2.1) 

where )(tT  is a n -dimensional vector containing the so-called state space variable (e.g. temperatures 
at the nodes of the discretisation mesh), )(tY  is a q -dimensional vector including the observation 
variables or outputs, and )(tU  is the inputs or excitations vector. θ  is the p -dimensional vector of 
models parameters, and F  and G two matrices of time-dependent non-linear functions. A particular 
model thus corresponds to specification of functions in matrices F  and G, as well as the parameters 
vector θ . 

For envelope models, linearity is usually assumed. Model (2.1) then becomes: 

)()()()()(
)()()()()(

tUGtTJtY
tUBtTAtT

θ+θ=
θ+θ=&

         (2.2) 

where A  ( n n× ) is the so-called state matrix, B  ( n r× ) is the inputs matrix, J  ( q n× ) is the outputs 
matrix and G  ( q r× ) is the direct gains matrix. 

PARAMETERS SPACE ANALYSIS 

I. Active and free model 
parameters identification 

II. Optimisation 

 
DIAGNOSIS 
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Typical model inputs in building thermal analysis are the outdoor dry temperatures, the solar 
irradiance on the different building facades, and the heating power injected in the different zones of 
the building. Most of the time, the model user is not interested on predicting the time evolution of the 
whole building temperature field. The ”mean” air temperature and/or the ”mean radiant” 
temperature at the building zones usually form the outputs vector. 

Concerning model parameters, we can split them in several categories: 

− Geometrical parameters: volumes, surfaces dimensions, walls orientation and inclination, 
thickness of the wall layers, etc. 

− Themophysical parameters: thermal conductivity, density, and specific heat capacity of the 
different materials in the building. 

− Optical parameters: solar transmittance, absorptance and reflectance for transparent elements; 
solar absoptance for the opaque elements; surfaces emissivities; etc. 

− Convective parameters: parameters in the phenomenological laws representing the heat 
exchanges taking place at the solid-air interfaces.  

− Air exchange parameters: parameters involving the infiltrations and ventilation processes 
representation. 

− Others: parameters related to heating/cooling control, shading devices operation, ventilation 
strategies, etc. 

Measurements 
Empirical model validation requires good quality and informative enough data concerning the 

building behaviour. The design of a validation experiment includes several choices, such as which 
signals to measure and when to measure them and which signals to manipulate and how to 
manipulate them. It also includes some more practical aspects, such as sensors accuracy and location. 

High quality experiments for empirical model validation purposes are scarce. The better ones has 
been carried out in specific and well characterised experimental devices (e.g. test rooms). In such 
cases, measurements sampling time generally goes from 1 minute to 1 hour and the experiment 
duration is several times larger than the first time constant of the system.  

Measurements must provide good enough information about the time evolution of both the 
forcing functions and the quantities involved in the definition of the outdoor environment. That is, the 
solar radiation (at least, its diffuse and its direct components), the temperature and the humidity of 
the different ambiances surrounding the system, the wind speed and the wind direction, the heating 
or cooling power supplied to the different zones of the system, etc.  

Measurements describing the thermal behaviour of the system generally concern the time 
evolution of the air temperature at different places, the black globe temperature, the temperature and 
the heat flux at the indoor wall surfaces, etc. However, measurements involving heat flux or surface 
temperatures are not reliable enough in practice. 

Uncertainties 
A keyword in empirical model validation is uncertainty. Uncertainty involves measured data, 

model parameters or/and structure, and model response: 

Measurements uncertainty 

Data are always associated with some uncertainty, if only because of the finite precision of the 
sensors used to collect them. The approach most commonly used to characterize such uncertainty 
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consists in assuming that data are corrupted by additive random noise, whose probability density 
function is known. While very popular, this approach is not immune to criticism. The probability 
density function assumed for the noise is not always based upon any sound prior information, and 
one does not necessarily have enough data to test it. Moreover there are situations where the main 
contribution to error is not of a random nature and therefore not suitably described by random noise. 

An attractive alternative to the stochastic characterization of errors is characterization by upper 
and lower bounds only. Let { }qktytY k ,,1 ),()( ** L==  be the q -dimensional vector of observed 
quantities. Measured bounded-error data at time t are thus represented by the intervals: 

[ ])()(       *
max,

*
min, tytyk kk∀         (2.3) 

Most sensors manufacturers provide rules for computing the maximum and minimum possible 
measurement errors at any given range of operation, allowing )(*

min, tyk  and )(*
max, tyk  to be 

computed. Structural errors (such as bias introduced by the location of a sensor within a 
inhomogeneous medium) may however lead one to choose more pessimistic bounds than those 
obtained by this method. These bounds can then be viewed as the extreme values of the error between 
system and model outputs that are considered acceptable by the experimenter. 

Model parameters uncertainty 

The uncertainty in model parameters is generally not of a random nature. It can reflect: 

− an imperfect knowledge of the system geometry or even composition; 

− the lack of measured data for parameters; 

− the uncertainty due to the finite precision of the sensors and methods used for measuring 
system properties; 

− the uncertainty associated to the system exploitation, which is generally related to an 
unpredictable behaviour of the future users; 

− and the imperfect knowledge we have about the physical processes taken place in the system.  

 
Hence, as data before, model parameters uncertainties will be characterised by upper and lower 

bounds. Let { }piti ,,1 ),( L=θ=θ  be the p -dimensional vector of model parameters. Parameters 
uncertainty is thus described by the intervals: 

[ ])(        max,min, ti iii θθ∈θ∀         (2.5) 

or in a more compact way, by 

[ ]max,min,

1

ii

p

i

θθ≡Θ ×
=

         (2.6) 

which is the Cartesian product of the previous p  intervals. The box Θ  will be called parameters set. 

When checking model validity, intervals (2.5) generally represent parameters uncertainty due to 
the finite precision of the sensors and methods used to estimate them (see section 2.2). For diagnosis 
purposes, they can be larger than the previous ones, as they represent the domain of variation where 
we are looking for suitable parameters values (see section 2.4). 
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Model response uncertainty 

Model outputs uncertainty results from the uncertainties of the model parameters. The uncertainty 
in the model response at time t , associated to the parameter set Θ , can be characterized by the 
intervals 

[ ]y t y t k qk k,min ,max( ) ( ) , , ,        = 1L        (2.7) 

so that ∀ ∈θ Θ  the probability for [ ]y t y t y tk k k( , ) ( ) ( ),min ,maxθ ∉  is less than α  (e.g. 0.01). If α = 0 , 
then (2.7) represents the intervals of minimum width, so as 

∀ ∈ ∀ ∀ ≤ ≤θ θΘ, , , ( ) ( , ) ( ),min ,maxt k y t y t y tk k k            (2.8) 

Such intervals are the result of an application from the parameters space to the outputs space that is 
defined through the model equations. Methods for calculating them are presented in next section. 
They are usually referred as “β% simulations uncertainty bands“, where 100)1( ×α−=β . 

2.2. CHECKING THE MODEL VALIDITY 
Checking the model validity is based on comparisons between measurements and simulations. 

The simplest way to compare them is just to depict the trace of the simulated values together with 
measured values. This is important and should never be overlooked. However, it is often not the best 
way to characterize the differences observed between measurements and simulations. Others 
methods have, therefore, also been applied. This section describes some of the mathematical tools 
available for rigorous checking of the model validity. 

Relevant characteristics of the residuals 
Residuals are defined as the difference between measurements and simulations*: 

e t y t y tmeasured simulated( ) ( ) ( )= −   

Relevant characteristics of residuals can be investigated by analysing trends, mean and standard 
deviation values, as well as spectral properties. This section introduces the statistics we are using as 
well as some comments on their meaning and their potential use for model validation purposes. 

− Stationarity. A stochastic process is said to be strictly stationary if its properties are unaffected 
by a change of time origin; that is, the joint distribution of any set of observations must be 
unaffected by shifting all the times of observations forward or backward by any integer 
amount. It is said to be stationary up to the order m  if all its joint moments up to the order m  
are independent of the absolute time. Usually, the term stationary is applied to a stationary 
process up to order 2. Different methods exist to detect non-stationarity: 1) depict residuals; 2) 
estimate mean and variance over different time periods; 3) analyse the autocorrelation 
function. Systematic changes in the level of a time series (trends) is a typical kind of non-
stationarity. In the framework of model validation, residuals trends usually reveal changes in 
the causes of deficient model behaviour. 

− Mean and variance. The mean value is the first statistic that can be used to characterise 
residuals. A mean value far from zero means that the model does not represent adequately the 

                                                           
* This is perhaps a little misleading since the term residuals most often is used for the deviations between an 
estimated model and the measurements (the so-called prediction error). This convention has been adopted 
here although there is a conceptual difference between simulation and prediction errors. 



Theory and computer implementation 

 

13

static behaviour of the actual system. The residuals variance measures the fluctuations of the 
residuals around their mean value. It can be used as a first indication of the ability of the 
model to describe the dynamic behaviour of the system. 

− Spectrum. The power spectrum is defined as the Fourier transform of the residuals auto-
covariance function. It shows how the residuals variance is distributed with frequency. In the 
framework of model validation, the spectrum can be used to determine at which frequencies 
the problems of the model mainly appear. In other words, it is a frequency check on the 
dynamic performances of the model. As it is shown later, the spectrum will allow us to 
estimate the domain of applicability for the model. 

Simulations-measurements consistency analysis 
Let  

[ ] [ ] [ ]max,min,max,2min,2max,1min,1 pp θθ××θθ×θθ=Θ L   

be the so-called parameter set, where [ ]max,min, ii θθ  ( i p= 1, ,L ) represent the uncertainty intervals 
for model parameters. We note  

[ ]y t y t k qk k,min ,max( ) ( ) , , ,        = 1L        (2.9) 

the model outputs bounds over Θ . They are also called “model outputs uncertainty” or “β%  
simulations uncertainty bands”. They have been defined in section 2.1. As pointed out before, 
measured bounded-error data are characterised by the intervals 

[ ] qktyty kk ,,1      , )()( *
max,

*
min, L=        (2.10) 

In the following, we will assumed that 99% simulation uncertainty bands (eq. 2.9) are not too large 
compared with the uncertainty bands associated with measurements (eq. 2.10). In other words, we 
suppose that the model is accurate enough for validation purposes. 

Some judgement about the validity of the model can be get by comparing measurements with the 
99% simulations uncertainty bands: 

− The model is stated to be good enough compared with data uncertainties when the following 
condition is verified 

∀ ∀ ≤ < ≤t k y t y t y t y tk k k k, ( ) ( ) ( ) ( ),min
*

,min ,max ,max
*     (2.11) 

If simulations uncertainty bands are always included in the measurements uncertainty bands, 
the validation procedure is then stopped for measurements uncertainty does not allow to go 
ahead with model defaults detection. 

− If the previous condition is not satisfied, we will say that measurements are within the 99% 
simulations uncertainty bands when no more than 1% of measured observations fall outside 
them. In such a case, judgement about the validity of the model requires more sophisticate 
mathematical tools (see section 2.4). This first comparison between measurements and 
simulations only supplies information about the validity of the model at low frequencies, it 
does not test the model behaviour at high frequencies. The firmest conclusion we can derive on 
the validity of the model can be summarised as: “It seems that the model reproduces 
adequately the static behaviour of the system”. 
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− If measurements are outside the 99% simulations uncertainty bands (more that 1% of 
measurements falling outside these bands), the model may be deficient and justifies further 
checking of the observed differences between measurements and simulations.  

Three different techniques are generally used to estimate the model uncertainty bands. They are 
based respectively on Monte-Carlo methods, differential sensitivity and stochastic sensitivity analysis 
(cf. [10, 4]). Two of them, those that do not require modifications of the simulation codes, have been 
applied in the framework of the IEA Task 22:  

− Standard Monte-Carlo approach. It assumes model parameters to be random variables 
whose probability density function is known. N  vectors Nss ,,1 ,)( L=θ  of parameters are 
chosen at random, based on the selected probability distribution functions (e.g. uniform 
distributions over [ ]θ θi,min i,max , ). Simulations are then performed for getting model outputs 

evolution associated to every parameter vector: Y t s Ns( ; ), , ,( )θ  = 1L  . Provided there are a 
large number of parameters in the model, irrespective of their distributional properties, it is 
expected that the outputs from simulations were normally distributed (central limit theorem) 
with mean and standard deviation 

m t
N

y tk k
s

s

N

( ) ( ; )( )=

=
∑1

1

θ  and [ ]s t
N

y t m tk k
s

k

s

N
2 2

1

1
1

( ) ( ; ) ( )( )=
−

−

=
∑ θ   (2.12) 

respectively. 99% simulations uncertainty bands for the kth  model output are then estimated 
as: 

m t s tk k( ) . ( )± 2 33          (2.13) 

This means that the probability of observing simulations outside such bounds at time t  is less 
than 1%. If outputs are normally distributed, the estimate of their time-dependent variance will 
follow a X2  distribution with 1−N degrees of freedom. Hence, the )%1( α−  confidence 
interval for the standard deviations is given by: 

2
1,2/1

2
1,2/

1)()(1)(
−α−−α

−
≤σ≤

−

N
kk

N
k

NtstNts
XX

      (2.14) 

It can be proved from the equation above that the accuracy of s tk ( )  depends only on the 
number N  of simulations undertaken and not on the number of free model parameters. In 
addition, only marginal improvements in accuracy are obtained after 100 simulations. This fact 
makes Monte Carlo methods a very efficient way for model outputs bounds calculation when a 
very high number of parameters are involved in the analysis. 

− Method founded on sensitivity analysis. Let { }poooo ,2,1, θθθ=θ L  be the vector of 
nominal values for model parameters. Parameters uncertainty is now characterised by the 
intervals 

{ }ppoooo θ∆±θθ∆±θθ∆±θ=θ∆±θ ,22,11, L      (2.15) 

The 99% model output bounds over this parameter set are then approximated by: 

),,1(            );();( qktyty kok L=θ∆∆±θ       (2.16) 
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where s tk i, ( )  represents the sensitivity of the k th  model output to the i th  parameter. Methods 
for sensitivity calculation are presented and discussed in section 2.3. 

The main advantage of this technique is its simplicity. Its application is, however, limited by 
the underlying hypotheses of linearity: linear relationships are assumed between any 
parameter change and the consequential change in the model outputs. Furthermore, the 
sensitivity to each parameter is supposed to be independent of the values of the other 
parameters. For most systems this is not strictly true. Nevertheless, for small changes in the 
parameters both assumptions may be reasonable (cf. [10, 15]). 

Spectral domain of applicability 
The validity of a model is generally in keeping with some kind of application – e.g. a model that is 

good enough for predicting heating load requirements could be inadequate for thermal comfort 
analysis. Usually, model validity depends both on the dynamic characteristics of the applied forcing 
functions and on the dynamic characteristics of the outputs that must be reproduced. Some pertinent 
advises concerning the potential field of model application can thus be supplied by checking its 
dynamic performances. As stated before the residuals power spectrum discloses at which frequencies 
the disagreements model-reality appears.  However, on this basis only subjective statements are made 
on the goodness of the model at different frequencies. 

A first attempt to check the dynamic behaviour of a model in a non sub-subjective way was the so-
called “qualifying density power spectrum” (QDPS) proposed in [4]. It is a “reference” allowing us to 
determine in which frequencies the model performs well or badly. The performance of the model is 
good when the density power spectrum of the residuals is below the reference spectrum, and is 
performing badly in regions where the residuals spectrum is above the reference. Main drawback of 
this approach concern the way the QDPS is defined since there still remains some subjective 
judgement in the creation of QDPS. In addition, a QDPS is always associated to a binomial system-
experiment, so as changing either the system or the experiment implies a new QDPS creation. A 
simpler and more rigorous approach is here proposed. 

Let )(ωΓ
ky   and )(ωΓ

ke  be respectively the power spectrum of the measured k th  model output 
and the power spectrum of the corresponding residuals. The variance of the measurements over the 
frequency interval 21 ω≤ω≤ω  is then given by 

{ } ∫
ω

ω

ω≤ω≤ω ωωΓ=

2

1

21
)(2)(2 dty

kykE         (2.18) 

and the variance of the residuals is  

{ } ∫
ω

ω

ω≤ω≤ω ωωΓ=

2

1

21
)(2)(2 dte

kekE         (2.19) 
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The model performance over the frequency interval 21 ω≤ω≤ω  can be defined as 

{ }
{ }

21

21

)(

)(
),( 2

2

21
ω≤ω≤ω

ω≤ω≤ω=ωωη
ty

te

k

k
k E

E
  k q= 1, ,L      (2.20) 

Such indices measure the significance of the residuals fluctuations compared to the fluctuations of 
the measured model outputs. The spectral domain of applicability of the model is then determined by 
all the frequency intervals 21 ω≤ω≤ω  so as thresholdkk η≤ωωη∀ ),(  , 21 , where thresholdη  is an user-
supplied threshold. 

2.3. ACTIVE MODEL PARAMETERS IDENTIFICATION, CORRELATION 
ANALYSIS AND PRELIMINARY DIAGNOSIS 

As we said before, this is a preliminary and fundamental step toward diagnosis. It aims to identify 
the physical phenomena and the parts of the model that can be really tested on the available 
experimental data. Sensitivity analysis is the main mathematical tool we are using to reach this 
objective. It involves: 

− Calculation of the model outputs sensitivity to every model parameters. Sensitivity 
provides first-order estimates of the effect of parameter variations on the model response. 

− Active model parameters identification. It must be noticed that all the parameters in the 
model can potentially affect the model behaviour, but generally only a small number of 
them are truly important or active. The reason is that not all the parts of the system are 
equally excited by the inputs, and not all the physical processes taken place have 
comparable effects on the quantities to be observed. The so called active model parameters 
are those to which model outputs are sensitive enough. They are related to the dominant 
parts in the model. Validation of phenomena whose mathematical representation includes 
any active parameter is not possible. 

− Active parameters correlation analysis. Two active parameters are stated to be strongly 
correlated when they show similar effects on the model outputs. Identifying correlations 
among active parameters is a fundamental step for correlations introduce additional 
limitations for validation purposes. That is, no distinction can be made between two parts 
of the model when their corresponding active parameters are correlated among them. 
Correlations between parameters depends both on the model structure (the way the 
parameters are involved in the model), and on the model inputs behaviour. While 
correlations related to the model structure are usually foreseeable, correlations induced by 
the model inputs are generally not easy to anticipate. Different tools as statistical linear 
correlation and principal components techniques are here proposed to gather active model 
parameters into independent (or quasi-independent) groups. 

− Principal components analysis and preliminary diagnosis. Principal components analysis 
(PCA) was introduced in statistics by Hotelling [16]. Dempster [17] gives an excellent 
geometric treatment of PCA as well as an overview of its history. Since 1933, applications 
based on PCA are growing on (image compression, model reduction, regularisation, 
structural instabilities analysis, etc.). As it is shown later, PCA allows de-correlating time 
series. In the framework of model validation we will use PCA for defining parameters 
signatures and for supplying some preliminary elements for diagnosis.  

Sensitivity calculation methods 
Sensitivity analysis studies the effect of parameter variations on the behaviour of a system. A 

rather complete state of the art on the techniques of sensitivity analysis is brought in [15]. One can 
distinguish two main families of sensitivity methods: those which follow a deterministic approach, on 
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the one hand, and those which adopt a statistical procedure, of another. The well-known techniques 
of differential sensitivity analysis are in the first group. Its characteristic is to examine the first-order 
derivatives of the model response with respect to its parameters.  

The sensitivity of the model outputs to the parameter θ i is defined by: 

S t Y t y t y t y t
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      (2.21) 

It provides first-order estimates of the effect of parameter variations on the model response. Similarly, 
the sensitivity of the state vector (e.g. temperature vector) to the model parameter θ i is: 
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According to the complexity of the problem, these derivatives either will be calculated in an 
approximate way (parameter-perturbation methods) or exact (sensitivity-equation methods): 

Parameter-perturbation method. The sensitivity of the k th  model output to the i th  model 
parameter is often approached in the following way: 

i

iikik

i

k tytyty
θ∆

θ∆±θ−θ
≈

∂θ
∂ );();()( 

       (2.23) 

where iθ  is the nominal value of the ith  model parameter and iθ∆  represents a small 
perturbation around its nominal value. 

The parameter-perturbation method is hence based on changing the value of a single 
parameter at a time, running the model and comparing the new model response to the one of 
the nominal model. 

Sensitivity-equation method. Among the exact methods (see Annex A), the so called direct 
or sensitivity-equation method is here considered. The equations governing the time evolution 
of S ti ( )  are obtained by simple differentiation of equations (2.2). This lead to the so-called 
sensitivity models ( i p= 1, ,L ): 
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where C, A and J are, respectively, the matrix of thermal capacities, the state matrix and the 
outputs matrix of the nominal model. The terms in brackets are evaluated for oθ=θ , where oθ  
represents the vector of nominal parameters values. 

Solving sensitivity problems hence involves the time integration of p+1  state models (the 
nominal model and the sensitivity models) of the form: 
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where X( )t  represents either T t( )  or S tT i, ( ) , and )(tY  represents either Y t( )  or S ti ( ) , with i = 
1, 2,.., p. It must be noticed that each sensitivity model includes as many ordinary differential 
equations as the nominal model. Sensitivity analysis for large-scale systems including a high 
number of parameters (e.g. hundreds of equations and parameters) could be then 
computationally intensive and limited by the computer performances. A numerical approach 
which makes it possible to extend the application of the sensitivity-equation method to such 
kind of problems is proposed in Annex A. It rests on the theory of balanced realisation, which 
makes it possible to strongly reduce the number of differential equations in a model without 
introducing a significant loss of precision. An example of application shows the effectiveness of 
the proposed method.  

Active model parameters identification and correlations analysis 

Let s tk i, ( )  the sensitivity of the k th  model output to the ith  model parameter. It represents the 

changes in y tk ( )  which are brought out by a unitary change in iθ . When the model includes more 
than one parameter, comparisons among sensitivities could be a tricky matter for parameters usually 
have different unities. So, for comparisons purposes the use of the reduced sensitivities is proposed: 

)( 
/

)( )(~
,, tstyts iki

ii

k
ik θ=








θ∂θ

∂
≡         (2.26) 

~ ( ),s tk i  represents the changes in the kth  output of the model caused by a relative variation in the θ i  

parameter. It must be noticed that ~ ( ),s tk i  and y tk ( )  are stated in the same unities. 

The effect of the parameter iθ  on the kth  model output is measured by means of the following two 
statistics: 
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where N  represents the total number of observations in the analysed time series. The first one 
(sensitivity mean value) measures the influence of parameters on the model static behaviour, and the 
second one (sensitivity standard deviation) measures their effects on the model dynamic behaviour. 

iθ  is said to be an active parameter with regard to the kth  model output when α>µ ik ,  or/and 

β>σ ik , . α  and β  are appropriate thresholds for testing parameters significance. 

Alternatively, the effect of the parameter iθ  on the kth  model output could be measured by means 
of the following distance 

2
,

2
,, ikikikd σ+µ=           (2.28) 

iθ  is said to be an active parameter with regard to the kth  model output when dk i,  is greater than a 
given threshold. 
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The necessary condition for a physical phenomenon could be validated on the available data, 
is that it involves at least one active parameter in its mathematical representation. However, 
this is not a sufficient condition. It is also required that active parameters associated to it was 
not correlated with another active model parameters.  

Active model parameters leading to similar effects on the model outputs must be identified for 
they introduce some additional limitations for validation purposes.  Statistical correlations analysis 
can be used to identify such limitations. The degree of correlation between parameters θ i  and θ j  

with regard to the k th  model output is measured by: 
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When ρ γij
k( ) > , no significant differences can be established between the effects of these 

parameters on the kth  model output. It can be then stated that both parameters, θ i  and θ j , belong to 
a same group of model parameters. A pertinent selection of γ  leads to the cutting up of the active 
model parameters set into g quasi-independent groups, π s s g ( , , )= 1L .  

For optimisation purposes (see section 2.5), we will define group representatives. A group 
representative is the parameter in a group that show a greater effect on the model outputs. For 
instance, the parameter θm  is the representative of the group { }π θ θ θs i j m=  when dk m,  (see 

eq. 2.28) is greater than both dk i,  and dk j, . Free model parameters will be the group representatives. 
The number of free model parameters is hence equal to the number of quasi-independent groups. 

Principal components analysis and preliminary diagnosis 
Principal components analysis is a statistical tool allowing transformation of a set of correlated 

time series into a new set of de-correlated ones. In the framework of model validation we are using it 
to define parameters signatures (another way of studying parameters correlations) and to supply 
some preliminary elements for diagnosis. 

Fundamentals of principal components analysis 

Let 

[ ]ζ ( ) ~ ( ) ~ ( ) ~ ( ), , ,t s t s t s tk k k p
T

= 1 2 L        (2.30) 

be the vector including reduced sensitivity time series for the k th  model output. The covariance 
matrix 

W t t dtT
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is a positive definite matrix ( p p× ) with a set of non-negative real eigenvalues 
λ λ λ1 2 0≥ ≥ ≥ ≥L p  and the corresponding mutually orthogonal eigenvectors 

[ ]V v v vp=
r r

L
r

1 2 . Hence, it can be written as 

W V V T= Σ            (2.32) 

where [ ]Σ = diag pλ λ λ1 2 L  is a diagonal matrix including the so-called singular values of 

ζ ( )t . 

It can be demonstrated that V  defines a complete basis in ℜ p . Consequently, ζ ( )t  can be written 
as 

ζ ( ) ( )t VX t=           (2.33) 

where [ ]X t x t x t x tp
T

( ) ( ) ( ) ( )= 1 2 L  is the vector of the decomposition coefficients of ζ ( )t  on V . 

The reduced sensitivity of the kth  model output to the i th  parameter is then written as 
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where vi m,  is the ( , )i m  element of the matrix V . The product v x ti m m, ( )  is the so-called « mth  

principal component of ~ ( ),s tk i  ». 

Some interesting properties of principal components are: 

P1. It can be proved that the components of the vector X t( )  are statistically uncorrelated. That is 
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i

o

f

( ) ( )∫ =
=
≠





λ
0

  (2.35) 

Proof : From equation 2.33, it is a simple matter to show that W VW Vx
T= . Knowing that 

VV IT =  and taking into account 2.32, the previous equation becomes W V WVx
T= = Σ .  

P2. The whole energy of ζ ( )t  is defined as 

E ≡ = ∫∑
=

trace W s t dtk i

t

t

i

p

o

f

( ) ( ),
2

1

       (2.36) 

It can be easily demonstrated that the whole energy of ζ ( )t  is given by the sum of its singular 
values: 
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E =

=
∑λ i

i

p

1

          (2.37) 

Proof : Using equation 2.32 and simple properties of matrices, it is a simple matter to show that 

E ≡ = = = =

=
∑trace W trace V V trace V V traceT T

i

i

p

( ) ( ) ( ) ( )Σ Σ Σ λ
1

 

 

PCA applications in the framework of model validation 

In the framework of model validation, PCA has three main potential applications: 

− It can be used to study correlations among model parameters through the analysis of the 
so called parameters signatures. 

− It allows forming a new set of truly independent parameters for further use in 
optimisation (see section 2.4). 

− It supplies some interesting information about diagnosis. 

 

 Model parameters signatures: From equations (2.34) and (2.35), it is easy to prove that the 
variance of the reduced sensitivity )(~

, ts ik  is given by 

∑∫
=

λ==σ
p

m

mmi

t

t

ikik vdttst

f

o
1

2
,

2
,

2
, )()(         (2.38) 

Hence, mmiv λ2
,  represents the contribution of the thm  principal component to the variance of )(~

, ts ik . 

We call signature of the thi  model parameter with regard to the thk  model output the ensemble 
{ }

pmmmiv ,,1
2
, L=
λ . Parameters showing similar signatures are parameters leading to similar effects on the 

model outputs when changing their values. As correlations analysis before, model parameters 
signatures can be used to group parameters and to identify possible causes of ambiguity in further 
diagnostics. 

 A new set of truly independent parameters: Assuming linear relationships between model 
outputs and model parameters, the effect of parameters changes on the outputs can be expressed as 

∀ =

=
∑k y t s tk

i

io
ki

i

p

        ∆
∆

( ) ~ ( )
θ
θ

1

        (2.39) 

where θ io  and ∆θ i  represents respectively the nominal value and the variation of the ith  parameter. 
According to 2.34, the previous equation becomes 
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)()(                (2.40) 

with 
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          (2.41) 

where v ji  is the ),( ij  element of the matrix V . 

The principal components analysis then suggests a new set of parameters { }γ i i p=1, ,L
 that are 

defined as linear combinations of the physical or initial parameters. The sensitivity of the model 
outputs to these new parameters is determined by the projection of ζ ( )t  on V . That is, x ti ( )  

represents the sensitivity of y tk ( )  to γ i . As { }x ti i p( ) , ,=1L  are statistically uncorrelated time series 

(see property P1), then { }γ i i p=1, ,L
 is a set of truly independent parameters. 

The significance of the parameter γ i  can be measured by  

λ λj
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−

∑
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          (2.42) 

which represents the contribution of x ti ( )  to whole energy of ζ ( )t  (see property P2). In the same 
way, the significance of the subset γ γ γ1 2, , ,   L m  is measured by : 

λ λj

j

p

j

j

m

=

−

=
∑ ∑














1

1

1

         (2.43) 

Knowing that λ λ λ1 2 0≥ ≥ ≥ ≥L p , the equation before allows to determine new 

active/free model parameters. Parameters γ γ γ1 2, , ,   L m  are stated to be active/free when 

λ λ βj
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=
∑ ∑
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         (2.44) 

where β  is an appropriate threshold (e.g. β = 0 95. ). In practice, it is often observed that only a few 
numbers of new parameters (mainly the first one) are really significant. 

 Preliminary diagnosis: When linear relationships can be assumed between model outputs and 
parameters, some useful information concerning diagnosis can obtained from principal components 
analysis. The possibilities for diagnosis are associated to two main observations: 
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− The significance of the first new independent parameter (see equation 2.42) is usually greater 
than 0.8; that is, the first component of the vector  )(tX  explains more than 80% of the whole 
energy of the signals in ζ ( )t . 

− A strong statistical correlation is generally observed between residuals and the first 
component of the vector )(tX . This mean that good enough linear relationships can be 
established between residuals and )(1 tx . 

Under such conditions, it can be assumed that significant reduction of the residuals will be associated 
to a model output variation of the form 

)()( 11 txtyk γ∆≈∆           (2.45) 

Taking into account the functional relationship existing between 1γ∆  and the initial model 
parameters: 

121
2

2
11

1

1
1 p

po

p

oo
vvv

θ
θ∆

++
θ
θ∆

+
θ
θ∆

=γ∆ L        (2.46) 

the “minimal” modification* of model initial parameters required will be: 

pjv jjoj ,,1/ 11 L=γ∆=θθ∆         (2.47) 

This equation shows that coefficients { }
pjjv

,,11 L=
 (the first eigenvector) supply some useful 

information concerning the way the initial model parameters must be modified in order to reduce the 
observed residuals.  

2.4. FREE MODEL PARAMETERS ESTIMATION AND DIAGNOSIS 
The main tool that we are proposing to guide modelling errors diagnosis is based on parameter 

estimation techniques. If some thing in the model is clearly wrong, it is expected to find large 
parameters displacements when fitting the model on the measured data. The comparison of the 
estimated parameters values with their nominal values, should lead to known reasons for the 
observed modelling errors and to suggest model improvements.  

Fitting the model on the measured data usually involves: 

− The definition of an objective. This can be done in very different ways. The simplest one 
consists on defining a scalar functional of the residuals (e.g. the residuals variance) to be 
minimised. More unusual objectives are those taking into account model and 
measurements uncertainties.  

− The definition of the problem constraints if any. In the framework of model validation, 
constraints usually refer to the allowed values for free model parameter. 

− The selection of the optimisation algorithm. Several criteria can be used for selecting the 
optimisation algorithm. First of all, the compatibility with the problem statement (objective 
and constraints). Next, the nature of the algorithm (global or local, deterministic or 

                                                           
* “Minimal” modification means that the maximum displacement joj θθ∆ /  is the minimum of all possible 

maxima. 
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stochastic, etc.), its performances (reliability, rate of convergence, etc.), and implementation 
facilities. 

The subject of optimisation is a fascinating blend of heuristics and rigour, of theory and 
experiment. It can be studied as a branch of pure mathematics, yet has applications in almost every 
branch of science and technology. An impressive amount of methods and optimisation algorithms 
have been proposed in the past. In the framework of model diagnosis, optimisation is usually a quite 
difficult problem because: 

− Data are always associated with some uncertainty, if only because of the finite precision of 
the sensors used to collect them.  Optimisation methods assuming errorless data, as those 
based on the minimisation of a scalar function of the residuals, could lead to fitted models 
that represents the dynamic behaviour of both the system and the measurement noise . 
Hence, diagnosis conclusions can be biased by data uncertainty. 

− Diagnosis usually requires finding the global solution of the optimisation problem instead 
of a local one.  The possibility of finding global minima has been largely considered in the 
past, but there still remain considerable difficulties. Historically, methods to solve global 
optimisation problems have been classified as either stochastic or deterministic. Stochastic 
methods evaluate the objective function at randomly sampled points from the parameter 
region of allowed variation. Deterministic methods, on the other hand, involve no elements 
of randomness.  

Three different optimisation methods have been implemented and tested in the framework of this 
project: 

− The Gauss-Newton method.  This method is only generally practicable to search for local 
solutions rather than global solution. It has been however chosen by its simplicity and its 
well known efficiency for finding local minima. 

− A random search global algorithm. All global optimisation algorithms can be partitioned 
into the two classes: reliable and unreliable. Clearly all stochastic methods, including 
simulated annealing, clustering, and random search, fall into the unreliable category. In 
fairness, however, efficiency is the strength of such methods. For now, large-scale 
problems may best be solved stochastically.  

− A deterministic global algorithm. The class of deterministic global algorithms, including 
branch and bound methods, covering methods, interval methods, tunnelling, and 
enumerating, can be partitioned into two categories: methods which compute objective 
function values at sampled points (point methods); and methods which compute function 
bounds over compact sets (bounding methods). This division further separates reliable 
methods from unreliable. Point methods are inherently incapable of reliably solving the 
global optimisation problem. On the other hand, bounding methods, if properly 
implemented, can produce rigorous global optimisation solutions. A heuristic bounding 
method has been here proposed. 

The first two methods are base on the assumption of errorless data. On the contrary, the 
deterministic global algorithm allows handling data uncertainty. 

The three methods are briefly described below. A discussion concerning their main advantages 
and drawbacks is included at the end of this section. 

Only single-output models have been considered. )(ty  and )(* ty  represent respectively 
simulations and measurements.  
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Gauss-Newton method 
Let  

 )()()( * t,θytyt,θe −=           (2.48) 

be the residuals associated to the parameter vector θ , and let  

 ∑
=

=
N

t

t,θeθJ
1

2 )()(           (2.49) 

 

be a quadratic measure of it. The Gauss-Newton method consider the problem of finding a local 
minimum of the objective function )(θJ . The minimising point is referred to as *θ . Note first of all 
that this method is only generally practicable to search for local solutions rather than global solution. 

As most of the optimisation algorithms, the Gauss-Newton one looks for the minimising point 
iteratively (see e.g. [18]). At iteration k, the parameters vector is modified as 

)()()1( kkk+  + p = θθ           (2.50) 

where the direction of search )(kp  is determined from the Hessian matrix and the gradient of the 
functional )(θJ  : 

[ ] )(1)()( kkk  GrHe = -p
−

         (2.51) 

The gradient is given by: 

∑ ζ
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kkk t t,θe 
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        (2.52) 
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As for the Hessian matrix, it is approached by: 

( )Tk
N

t=

kk t t  
N

 = He )()(2 )(

1

)()( ζζ∑         (2.54) 

The iteration loop is terminated when the following user-supplied convergence test become 
satisfied: 

 < αθJ k )( )(   or < βθ - JθJ k+k )()( )1()(       (2.55) 

where α  and β  are user-supplied thresholds. 
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Monte Carlo approach 
Monte Carlo methods consider the problem of finding the global minimum of the objective 

function )(θJ  (eq. 2.49) over a given parameter set Θ . We remember that the parameter set is 
defined by the box 

[ ] [ ] [ ]Θ = × × ×θ θ θ θ θ θ1 1 2 2,min ,max ,min ,max ,min ,maxL p p  

where [ ]θ θi i,min ,max  represents the allowed interval of variation for the ith  free model parameter. 
It defines the parameters domain where we are looking for parameters values allowing significant 
model residuals reduction. Such intervals have generally nothing to do with precision: 

− They must be wide enough so that modelling hypothesis associated to the free model 
parameters could be tested.  

− They must be chosen so as model outputs bounds over Θ  include measurements. In this 
way, the parameter set hopeful includes parameter vectors leading to a good enough model 
behaviour. 

As previously, the minimising point is referred to as θ* ∈Θ  

Pure random search algorithm 

Among the existing stochastic approaches (see e.g. [19]), a « pure » random search algorithm has 
been selected because its simplicity. It performs as follows:  

a) Generates n random parameter vectors ( nss ,,1   , )( L=Θ∈θ ) based on uniform 
probability distribution functions. 

b) Performs model simulations and calculates , n, s=J s L1 ),( )(θ . 

c) Estimates the minimum value of the objective function as 
{ })(,),(),( min = )()2()1(* nJJJJ θθθ L . The solution we are looking for is then *θ  so as 
**  )( JJ =θ .  

In order to see how close the algorithm comes to finding the global minimum, the Chevyshev 
inequality can be applied to the sample results. This theorem states that if the mean, m, and the 
standard deviation, s, of the sample of )(θJ  values are obtained as estimates of the universal mean, 
µ , and standard deviation, σ ,of the distribution of all )(θJ  possible values, then for any real 
number, r, the probability that the observed value, x, is exceeded is given by: 

( )P x -µ σ≥ ≤
1

2r
 

In other words, the probability of a )(θJ  value falling outside the interval [ ]µ σ µ σ− +r r,   is at 

most 1
2r . For instance, if the highest (or lowest) value of )(θJ  is found to be 3.5s from the mean 

value, then it would be expected that 8.2% (≅1/3.52) of the expected )(θJ  values would be found 
distributed beyond m ± 3.5s. If the tails of the )(θJ  distribution are found to be similar, then an upper 
bound for the probability of )(θJ  values exceeding the highest (or lowest) observed value would be 
0.041. 
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Multi-step random search algorithm 

The previous algorithm allow us to find the global minimum of the objective function )(θJ  over a 
user-supplied parameters set Θ . Choosing it is a non trivial task and the quality of diagnosis could be 
biased by the selection of Θ . Hence, an iterative procedure has been proposed to get the optimisation 
solution we are looking for (see figure 2.2):  

(a) First of all, a prior parameter set Θ  is selected. 

(b) Random search is then carried out and model outputs bounds over Θ  are calculated. 

(c) Next, the parameter set consistency with data is tested. One said that Θ  is consistent 
with data when the corresponding model outputs bounds include measurements. In 
other words, measurements and model simulations are in good agreement. 

(d) If Θ  is stated to be consistent with data, the procedure is stopped; otherwise, the 
parameter set is re-defined and we come back to b). 

 

 

 

 

 

 

 

 

 

Figure 2.2. Multi-step random search algorithm loop. 

Heuristic bounding method 
The development of techniques for estimating model parameters from uncertain data is in full 

expansion (see [20] for a quite complete survey). Deterministic global algorithms are among them a 
very promising way to tackle such kind of estimation problems, especially algorithms that compute 
the objective function over compact sets (bounding methods) instead of at sample points. A heuristic 
bounding algorithm (HBA) has been proposed in the framework of the IEA Task 22. 

Contrary to the algorithms presented previously, the HBA takes into account data uncertainty. The 
problem is no longer stated as: “looking forθ* ∈Θ  that minimizes an objective function measuring 
the simulation error”. Instead of that, we are looking for a parameter set Θ  providing simulation 
uncertainty bands including measurements. Two main statements of the problem have been 
considered: 

First statement. Look for Θ  of minimum width so that:  

 [ ])()()(      maxmin
* tytytyt ∈∀         (2.56) 

Initial domain 
Θ( )o  

New domain 
Θ( )i  
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& 
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where )(min ty   and )(max ty are respectively the model output lower and upper bounds over Θ  
(see section 2.1 for definition). 

Second statement. Look for Θ  so that:  

 [ ] [ ])()()()(      *
max

*
minmaxmin tytytytyt ⊂∀        (2.57) 

where )(*
min ty   and )(*

max ty  are respectively the measurements lower and upper bounds. 

The HBA algorithm performs iteratively as follows: 

a) Performs model simulations using the parameter vector [ ]pθθθ=θ L21 . Results are 

noted )(ty . 

b) Calculate model output sensitivity to every parameter around the trajectory )(ty (see section 
2.3; “sensitivity calculation methods”): 

 [ ]Tp tststst )(~)(~)(~)( 21 L=ζ  

c) Performs principal components analysis on )(tζ  (see section 2.3 ; “principal components 
analysis “): 

− calculate the singular values of )(tζ  ( λ λ λ1 2 0≥ ≥ ≥ ≥L p ) and the 

corresponding eigenvectors ( [ ]V v v vp=
r r

L
r

1 2 ); 

− project of )(tζ  onto the eigen-basis V , )()( tVtX Tζ= ; and 

− identify significant components of )(tX  using the energy criterion given by equation 
(2.44): )()()( 21 txtxtx dL , with pd ≤ . Frequently, only a few numbers of the 

)(tX  components (mainly the first one) are really significant. 

d) Estimate the parameter set Θ  that verify (2.56) or (2.57) assuming linear relationships between 
the model output and the model parameters (see equation 2.39): 

For the first statement 

− calculate )(ty∆  so as )()()( , * tytytyt ∆+=∀ ; 

− calculate  (t)iγ∆  with ),,1( di L=  so that t∀  the equation 
)()()( d11 txtxty dγ∆++γ∆=∆ L  is verified;  

− select times mint  and maxt  where )(ty∆  takes respectively its maximum and minimum 
values, and define the vectors { } dii ,,1minmin )(t L=γ∆=γ∆  and { } dii ,,1maxmax )(t L=γ∆=γ∆ ; 

For the second statement 

− calculate )()()( *
minmin tytyty −=∆  and )()()( *

maxmax tytyty −=∆ ; 

− calculate  { }
dii ,,1min,min L=

γ∆=γ∆  so that the variance of  

( ))()()()( mind,1min1,min txtxtytr dγ∆++γ∆−∆= L  is minimised (linear least squared 
method);  



Theory and computer implementation 

 

29

− calculate  { }
dii ,,1max,max L=

γ∆=γ∆  so that the variance of  

( ))()()()( maxd,1max1,max txtxtytr dγ∆++γ∆−∆= L  is minimised (linear least squared 
method);  

For both statements 

− estimate the parameter set Θ  solving the equations 

min(max)min(max) θ̂∆=γ∆ T
dV         (2.58) 

where dV  is the matrix ( dp× ) including the eigenvectors  1vr  to dvr . Taking into 

account that IVV T
dd =  (orthonormal eigen-basis), the solution of the equation before 

is: 

min(max)min(max)
ˆ γ∆=θ∆ dV  

where  
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ˆ L  

It must be noticed that if pd <  the solution of (2.57) is not unique, the number of 
unknowns is greater than the number of equations available. In such case, the solution 
Θ  proposed by the algorithm is the one leading to smaller parameter displacements 
(“minimal” changes). 

e) Define a new vector of parameters newθ  as the geometrical centre of Θ  and calculate the 

difference newθ−θ . If ε<θ−θ new , the estimation procedure is stopped ; otherwise, make 

newθ=θ  and return to a). 

Main hypothesis underlying the HBA is linearity. That is, linear relationships are assumed 
between any parameter change and the consequential change in the model output. For most systems 
this is not strictly true. Nevertheless, for small changes in the parameters such an assumption is valid. 
The hypothesis of linearity, and thus the quality of the solution Θ  proposed, can be verified by 
comparing model output bounds over Θ  calculated by Monte Carlo techniques with those coming 
form sensitivity analyses.  

Discussion 
Main advantages and drawbacks of the three optimisation methods described in this section are 

here summarised. 

The Gauss-Newton method is only generally practicable to search for local solutions rather than 
global ones. In addition, the method is associated to a problem statement that assumes errorless data. 
It is however a simple and quite efficient method when practicable.  

The random search algorithm belongs to the non-reliable category of stochastic global methods. As 
the previous method, errorless data are assumed in the problem statement. Main drawback of this 
approach is related to its non-reliability: the closeness of the solution to the global optimum can only 
be evaluated a posteriori and in terms of probability. Additionally, there is no way to decide a priori the 
number of trials to be carried out.  In fairness, however, efficiency is the strength of such method. For 
now, large-scale problems may best be solved stochastically. 



Elena Palomo and Gilles Guyon 

 

30 

 

The heuristic bounding method has been developed in the framework of the IEA Task 22. It seems 
to us a promising way for modelling diagnostic purposes. Main reason is that HBA allows to 
incorporate data uncertainty (see problem statement) and it is conceived for reliable global solution 
searching. In addition, HBA computer implementation is quite easy and it does not require any 
simulation code modification.  Main limitation is associated to the assumption of linear relationships 
between model outputs and parameters. As we said before, for most systems this is not strictly true. 
Nevertheless, for small changes in the parameters (small parameter set solution width) such an 
assumption is valid. 
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2.5. A ILLUSTRATIVE EXAMPLE 
To illustrate the principles and methods we are proposing, a simple model validation exercise is 

here proposed. The object under analysis is a multi-layer vertical wall that separates two rooms in an 
actual building (see Fig. 2.3). The wall exchanges heat by convection with the air in the rooms, and it 
absorbs solar radiation by its right facade. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Wall sketch and composition (from the right to the left side). 

The model and the experimental data 
A one-dimensional conduction model is adopted for each one of the wall layers ( , , )k = 1 6L : 
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∂
∂
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where xo
k( )  and xl

k( )  are the left and right coordinates of the k th  layer. ρ( )k , cp
k( )  and λ( )k  are, 

respectively, the density, the specific heat and the thermal conductivity of the layer. Boundary 
conditions at x xo

k= ( )  (resp. x xl
k= ( ) ), when in contact with another capacitive layer j , are: 
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Boundary conditions at x = 0  and at x L=  ( L = wall thickness) are: 

− = − −
=

λ
∂
∂

( ) ( , ) ( ( , ) ( ))1

0

0T x t
x

h T t T t
x

left left        (2.59) 

and 

LEFT ROOM RIGHT 
ROOM

Solar 
Radiation 

Absorption 

Convective 
Heat Transfer

Convective 
Heat Transfer

LAYER (m) 
Paper 0.001 
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Air 0.010 
Hollow blocks 0.200 
Facing  0.020 
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− = − − +
=

λ
∂
∂

ηϕ( ) ( , ) ( ( , ) ( )) ( )6 T x t
x

h T L t T t t
x L

right right                                                                          (2.60) 

where T tleft ( )  and T tright ( )  are respectively the air temperature in the left and right rooms, and ϕ( )t  

represents the solar irradiance on a south oriented vertical surface. hleft  and hright  are constant 
convective coefficients for wall-air heat exchanges representation, and η  is the solar efficiency of the 
wall referred to the solar irradiance on a south oriented vertical surface. The model involves 18 
parameters whose nominal values are given in Table 2.1. 

 Thickness ρc p ×
−10 3  λ  h  η  

 ( )m  ( . . )J m K− −3 1  ( . . )W m K− −1 1  ( . )W m−2  ( )−  
Plasterboard 0.010  680 0.350 4.0 0.008 
Polystyrene 0.080 18 0.043   
Air 0.010 1.29 0.071   
Hollow blocks 0.200 1140 1.052   
Facing  0.020 1657 1.150 4.0  

 
Table 2.1. Nominal values for model parameters: ρ , density; cp , specific heat; λ , thermal conductivity; h , 
convective coefficients; η , optical efficiency. 

Spatial discretisation of equations (2.57) to (2.60) leads to a state model of the form (2.1), which 
includes 36 ordinary differential equations. The input signals to the model are the air temperature in 
the left and the right rooms (see Fig. 2.4, right), and the global solar irradiance on an outdoor south 
vertical surface (see Fig. 2.4, left). Concerning outputs, we will focus our attention on the wall right 
surface temperature, whose measured behaviour is represented in figure Fig. 2.5 (left). 
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Figure 2.4. Left: Air temperature in the left and right rooms; Right: Solar irradiance. 

The differences observed between measurements and model simulations (residuals) are shown in 
Fig. 2.5 (right). It seems to be clear that the model does not reproduce adequately the static behaviour 
of the system, it overestimates the wall temperature (residuals mean value = − °0 88. C ). Concerning 
its dynamical performances, no much better results are observed: residuals show low frequency 
trends and peaks, and its standard deviation value is 0.4°C . Figure 2.5b includes the residuals 
density power spectrum. It shows that problems in the model mainly appear at low frequencies. 
Conclusions from simulations-measurements consistency analysis doest not differ from the previous 
ones. 100% of measurements fall outside the simulation uncertainty bands. Last ones have been 
calculated assuming ±10% of uncertainty for all model parameters. The model or the inputs to the 
model are wrong. 
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Figure 2.5. Left: Wall surface temperature; Right: Residuals. 

 

Figure 2.5b. Left: Residual spectral density; Right: Simulations uncertainty bands (continuous lines) and 
measurements (crosses). 

Sensitivity analysis 
The sensitivity of the model output (wall surface temperature, right side) to the model parameters 

variations has been calculated by time integration of the corresponding sensitivity models (sensitivity-
equation method).  

Active model parameters 

Table 2.2 includes the mean and the standard deviation values of the reduced sensitivities. 

   
Mean (°C) 

Standard 
Deviation 

(°C) 
Conductivity Plasterboard -0.0065 0.0094 
 Polystyrene -0.4243 0.1790 
 Air -0.0315 0.0132 
 Hollow blocks -0.0404 0.0148 
 Facing  -0.0034 0.0017 
Capacity Plasterboard -0.0060 0.2501 
 Polystyrene -0.0006 0.0185 
 Air  0. 0000 0.0000 
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 Hollow blocks -0.0068 0.0184 
 Facing   0.0006 0.0039 
Thickness Plasterboard 0.0001 0.2449 
 Polystyrene 0.3861 0.1619 
 Air 0.0298 0.0125 
 Hollow blocks 0.0304 0.0254 
 Facing  0.0037 0.0035 
Others hleft  -0.0502 0.0228 
 hright   0.3892 0.3568 

 η   0.1815 0.3353 
Table 2.2. Results from sensitivity time series statistical analysis.  

Active model parameters are assumed to be those leading to mean and standard deviation values 
greater than 0.05°C : 

1 Plasterboard - Heat Capacity 
2 Polystyrene - Thermal Conductivity 
3 Left side Convective coefficient 
4 Right side Convective coefficient 
5 Solar efficiency 
6 Polystyrene - Thickness 
7 Plasterboard - Thickness 

 

Figures 2.6 and 2.7 show the time evolution of the reduced sensitivities corresponding to the active 
model parameters. It can be seen that the effect of parameters 1 and 7 (plasterboard heat capacity and 
thickness) on the  wall  temperature merge.  Parameters 2 and 6 (polystyrene thermal conductivity 
and thickness) produce opposite but similar effects on the wall temperature. No similarities are found 
among the sensitivity behaviour from the other parameters.  
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Figure 2.6. Time evolution of reduced model output sensitivities to parameters 1 and 7 (left) and to 
parameters 2 and 6 (right). 
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Figure 2.7. Time evolution of reduced model output sensitivities to parameters 3 and 4 (left) and to 
parameter 5 (right). 

 

Correlations analysis 

Table 2.3 includes correlation values among parameters sensitivity time series. 

 1 2 3 4 5 6 7 
1 1.0000 0.0821 -0.4148 -0.0303 -0.4066 0.0306 0.9996 
2 0.0821 1.0000 -0.3884 0.3667 -0.3110 -0.9935 0.0777 
3 -0.4148 -0.3884 1.0000 -0.2522 -0.4589 0.3461 -0.4092 
4 -0.0303 0.3667 -0.2522 1.0000 0.0020 -0.3750 -0.0345 
5 -0.4066 -0.3110 -0.4589 0.0020 1.0000 0.2630 -0.4085 
6 0.0306 -0.9935 0.3461 -0.3750 0.2630 1.0000 0.0353 
7 0.9996 0.0777 -0.4092 -0.0345 -0.4085 0.0353 1.0000 

Table 2.3. Results from active model parameters correlation analysis. 

As previously, it can be seen that the parameters 1 and 7 (plasterboard heat capacity and thickness) 
and the parameters 2 and 6 (polystyrene thermal conductivity and thickness) are strongly correlated. 
Small changes of their values lead to similar effects on the model output. Active parameters are then 
grouped as: 

 Parameters in the group Group representative 
1 Plasterboard Heat Capacity 

Plasterboard Thickness 
Plasterboard Heat Capacity 

2 Polystyrene Thermal Conductivity 
Polystyrene Thickness 

Polystyrene Thermal Conductivity 

3 Left side Convective coefficient Left side Convective coefficient 
4 Right side Convective coefficient Right side Convective coefficient 
5 Solar efficiency Solar efficiency 

Table 2.4. Active model parameters groups and groups representatives.. 

The phenomena in the model that can be tested using the available data are : heat conduction in 
the plasterboard and the polystyrene layers, heat convection at the wall surfaces and the solar 
processor. 

Principal components analysis 

The principal component analysis has been performed on the sensitivity time series corresponding 
to the 7 active model parameters: 
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[ ]Ttststst )(~)(~)(~)( 721 L=ζ  

The spectral decomposition of the )(tζ - covariance matrix leads to 
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with the following eigenvectors 





























=

0.2171-   0.5178    0.5033-   0.1646-   0.6003    0.2007-   0.0605    
0.7246    0.2808    0.1559    0.1781    0.2716    0.0618    0.5123-   

0.0144-   0.2004-   0.4293-   0.2516-   0.0332    0.8104    0.2329-   
0.0019    0.1538-   0.4696-   0.8667    0.0286-   0.0012    0.0617    

0.0147-   0.1995-   0.4220-   0.2331-   0.3589-   0.5004-   0.5902-   
0.6376    0.0161    0.3725-   0.2489-   0.2498-   0.0859-   0.5680    
0.1442    0.7410-   0.0264    0.1020-   0.6106    0.2035-   0.0695    

V  

and the eigenvalues bellow 

[ ]0.0000    0.0061    0.0445    0.38    76.98   92.44   342.29diag=Σ  

The vector )(tζ  then can be written as )()( tVXt =ζ , where [ ]TtxtxtxtX )()()()( 721 L=  is 
the vector of decomposition coefficients resulting from projection of )(tζ  onto the eigen-basis V . The 
time evolution of the first five components of )(tX  is represented in figure 2.8.  It can be seen that 
only the first three components of )(tX  show significant fluctuations. 
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Figure 2.8. Time evolution of the )(tX  vector components. 

The resulting model parameters signatures (see eq. 2.38) are given in Table 2.5. They are defined as 
the contribution of the principal components to the variance of the sensitivity time series. Table 2.5 
shows that only the first three principal components significantly contribute to explain the variance of 
the sensitivity time series associated to the active model parameters. In addition, it can be seen that 
parameters 1 and 7 (plasterboard heat capacity and thickness), as well as parameters 2 and 6 
(polystyrene thermal conductivity and thickness), exhibit similar signatures.  This leads us to propose 
the same parameter grouping than the one coming from correlations analysis (see Table 2.4). 
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 Contribution to the variance of the principal component number 
 1 2 3 4 5 6 7 

1 0.0484 0.1119 0.8395 0.0001 0.0000 0.0001 0.0000 
2 0.9524 0.0059 0.0414 0.0002 0.0001 0.0000 0.0000 
3 0.7828 0.1520 0.0651 0.0001 0.0001 0.0000 0.0000 
4 0.7846 0.0001 0.0378 0.1716 0.0059 0.0001 0.0000 
5 0.2338 0.7647 0.0011 0.0003 0.0001 0.0000 0.0000 
6 0.9369 0.0037 0.0592 0.0001 0.0000 0.0000 0.0000 
7 0.0382 0.1138 0.8473 0.0003 0.0003 0.0000 0.0000 

Table 2.5. Active model parameters signatures. 

As it was discussed in section 2.3, principal components analysis allows us to propose a new set of 
truly independent parameters. Such parameters are defined as simple functions of the initial ones: 

7,,1             
7
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θ
θ∆
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j
i  

where  v ji  is the ),( ij  element of the matrix V . The sensitivity of the model output to these new 
parameters is given by: 

7,,1            )( )(
L==

γ∂
∂ itxty

i
i

 

Hence, iγ  parameters significance can be studied by means of: 

− the mean time and the standard deviation values of )(txi ; 

− the contribution of )(txi  to the whole energy in )(tζ  (see eq. 2.42); and 

− the statistical correlation existing between the residuals and )(txi . 

 Sensitivity 
mean value 

Sensitivit
y  
standard 
deviation 

Contribution 
to the )(tζ  
energy 

Correlation 
with 
residuals 

1γ     -0.7143 0.3402 0.6683 -0.9327 

2γ      0.0138 0.4113 0.1805  0.2318 

3γ      0.0751 0.3679 0.1503  0.0599 

4γ     -0.0049 0.0259 0.0007 -0.0013 

5γ     -0.0006 0.0090 0.0001  0.0956 

6γ     -0.0002 0.0033 0.0000 -0.0022 

7γ      0.0000 0.0002 0.0000 -0.0723 

Table 2.6. Results from the analysis of the iγ  parameters significance. 

Table 2.6 shows that only the first three new parameters are really significant. Indeed, the first one 
explains more than 65% of the whole energy in )(tζ . In addition, it is the only parameter showing a 
significant effect on the model static behaviour (remember that the main problem in the model 
concern the static regime) as well as a high degree of correlation with residuals.  
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Consequently, a preliminary diagnosis of the model could be intended from first eigenvector (first 
column of the matrix V ). It has been represented if figure 2.9, where we can see that physical 
parameters showing a greater contribution to 1γ  value are: the polystyrene layer thermal conductivity 
and thickness (parameters 2 and 6), the left side convective coefficient (parameter 3) and the solar 
efficiency (parameter 5). Improving the model performances likely involves significant changes in the 
values of these parameters. This probably means that the thermal conduction modelling, the heat 
convective flux at the wall-air interface representation and the solar processor must be reviewed. Such 
preliminary conclusions must be however confirmed by optimisation techniques. 

 

Figure 2.9. First eigenvector representation. 

Optimisation and diagnosis 
The model has been fitted on the available data to estimate the group representatives in table 2.7 

(free model parameters). We have applied both the Gauss-Newton method (GNM) and the HBA 
developed by us. The results achieved are presented in Table 2.7. First of all, we can see that no 
fundamental differences concerning diagnosis are observed between Gauss-Newton and HBA 
methods. The parameter set proposed by the HBA includes the parameter vector estimated by the 
Gauss-Newton algorithm. 

Concerning residuals, the solution proposed by GNM significantly improves the model behaviour. 
The residuals mean value is -0.04°C and standard deviation is 0.2°C. Simulations uncertainty bands 
over the parameter set proposed by HBA are represented in figure 2.10.  We can see that  ≈100% of 
measurements fall into these bands. 

 Nominal value Gauss-Newton 
estimations 

Bounding method 
estimations 

Plasterboard Heat Capacity 680.0 635.8 [646.0, 650.3] 
Polystyrene Conductivity 0.043 0.063 [0.059, 0.078] 
Left side Convective coefficient 4.0 2.47 [1.93, 3.43] 
Right side Convective coefficient 4.0 3.99 [4.46, 4.81] 
Solar efficiency 0.008 0.0034 [0.0025, 0.0026] 

Table 2.7. Active model parameters nominal values and estimations. 
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Figure 2.10. Simulation uncertainty bands over the parameter set solution and measurements. 

From Table 2.7, we can conclude that improving the model behaviour implies strongly 
modifications of the thermal conductivity of the polystyrene layer, the heat convective coefficient at 
the wall left side, and the solar efficiency. Values for the first one must be increased, and values for 
the second and third one have to be decreased.  Hence, modelling heat transfer conduction must be 
reviewed (the augmentation of the conductivity suggest the existence of thermal bridges or nominal 
material properties not fully matching the final as-constructed conditions of the test cell), the solar 
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processor have to be improved, and the heat convection representation at the wall-air interfaces must 
be reviewed too.  

2.6. COMPUTER IMPLEMENTATION 
Two main tools for validation purposes have been developed within IEA’s Task 22: MED 

(Modelling Errors Diagnosis Tool) and MEDLab (Matlab Modelling Errors Diagnosis Tool). There are 
briefly described in this section. Please, contact the authors for getting the corresponding β-versions 
and the user manuals [21, 22]. 

MED 
MED is an ensemble of Fortran codes and Unix procedures that does not include any modelling-

simulation environment. Fortran codes contain validation methods and algorithms, and Unix 
procedures serve for MED codes and simulation environment management. 

The link between MED and a modelling-simulation environment is made by means of some 
“bridges” files. The modelling-simulation environments that have been already connected to MED 
are: 

− M2m [23], developed by the Groupe Informatique et Systèmes Energétiques of the Ecole 
Nationale des Ponts et Chaussées (GISE-ENPC). 

− Clim2000 [24], developed at Electricité de France (EDF). The Clim2000 solver is ESACAP [25]. 

− CA-SIS [26], an EDF’s modelling-simulation environment based on TRNSYS [27]. 

 
MED has been tested both on SUN and HP Unix workstations. The MED graphical interface is 

based on Gnuplot [28]. 

MED allows: 

− Checking model validity as described in section 2.2 (residuals main characteristic analysis, 
comparisons between model outputs uncertainty bands and measurements, and calculation of 
the spectral domain of application of the model). 

− Model diagnosis using spectral residuals analysis techniques. PAMTIS [29, 30], the software  
package for residuals analysis developed in PASSYS, has been included in MED. 

− Modelling errors diagnosis by model parameters space analysis techniques as described in 
section 2.3 (sensitivity analysis and optimisation). 

 
The ensemble of methods included in MED is summarized in Table  2.8: 

 
SPECTRAL ANALYSIS  Power spectra calculations 
  Spectral test for model applicability 
  Multiple squared coherence function 
  Test for zero multiple coherence 
  Partial squared coherence functions 
PARAMETERS SENSITIVTY   Parameter-perturbation method 
ANALYSIS   Screening based on mean and variance 

values 
  Parameters correlation matrix calculations 
MODEL OUTPUTS BOUNDS  Standard Monte Carlo methods 
  PSV interacting approximation [21] 
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OPTIMISATION  Pure random search algorithm 
  Multi-start random algorithm [21] 
  Branch and bound algorithm [21] 

Table 2.8. Methods and algorithms in MED. 

MEDLab 
MEDLab has been developed under Matlab. Contrary to MED, it only addresses linear models. It 

is then more restrictive than MED but implemented methods are more efficient. As MED, it does not 
include any modelling environment. It has been already linked to M2m [23] and to Clim2000 [24]. 

MEDLab allows: 

− Checking model validity as described in section 2.2 (residuals main characteristic analysis, 
comparisons between model outputs uncertainty bands and measurements, and calculation of 
the spectral domain of application of the model). 

− Modelling errors diagnosis by model parameters space analysis techniques as described in 
sections 2.3 and 2.4 (sensitivity analysis and optimisation). 

 
The ensemble of methods included in MEDLab is summarised in Table  2.9: 

 
RESIDUALS ANALYSIS Trends, means and standard deviations 
 Power spectra calculations  
MODEL OUTPUTS BOUNDS  Standard Monte Carlo method 
  Sensitivity based method 
SENSITIVITY ANALYSIS  Sensitivity-equation method 
  Screening based on mean and variance 

values 
  Parameters correlation matrix calculations 
  Principal components analysis 
OPTIMISATION  Gauss-Newton method 
  Random search algorithm 
  Heuristic bounding algorithm 

Table 2.9. Methods and algorithms in MEDLab. 

2.7. SUMMARY AND CONCLUSION 
The IEA empirical model validation approach has been presented in this chapter. Two main steps 

can be distinguished in this approach: 

Checking model validity. The objective is to test the model performances by identification of 
significant disagreements between measurements and simulations. It involves residuals analysis, 
simulations-measurements consistency analysis, and the estimation of the model spectral domain of 
application. Standard mathematical tools have been proposed for reaching such an objective. 

Model diagnosis. Main objective of this step is to explain the differences observed between 
measurements and simulations and to propose model improvements. This means going up from the 
observed disagreements to the faulty modelling hypothesis. A new approach based on the model 
parameters space analysis has been developed. It involves: 

 Sensitivity analysis. The principal aim of this part if to identify the parts of the model as well as 
physical phenomena that can be really tested on the available data. Sensitivity calculations, 
correlation analysis and principal components analysis are the main tools proposed to reach 
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this objective. Some preliminary elements for diagnosis are already supplied by PCA at this 
stage. 

 Optimisation.  Parameters estimation techniques are the main mathematical tool we are 
proposing to guide model diagnosis. Free model parameters values allowing significant 
residuals reduction are here identified by fitting the model on the available data. Diagnosis 
mainly involves comparisons between estimated and nominal model parameters values. Three 
different algorithms for optimisation have been proposed and discussed. 

 Diagnosis. The possible causes of discrepancies between measurements and simulations are 
finally elucidated using: 

− Some knowledge about the model. The main information required concerns the 
phenomena considered in the model and the parameters involved in their representation. 

− Modelling hypothesis analysis. Foreseeable model parameter values for each one of the 
hypothesis in the model, as well as for their negative statement, are desired but difficult to 
obtain. Instead, some knowledge about what kind of model parameter displacements are 
expected when inadequate modelling hypothesis, can be used. For instance, un-modelled 
thermal bridges (when significant) will lead to systematic increasing of thermal 
conductivity values when fitting the model to the data.  

− Parameter changes analysis. It involves comparisons between estimated and nominal 
model parameters values. Large differences are expected for parameters involved in 
phenomena which are not correctly represented in the model. 

The combination of these three elements of judgement should lead to know reasons for the 
observed model errors, and to suggest model improvements. 

 

 



 

 
 
 
 
 

Chapter 3 

APPLICATION TO THE VALIDATION OF 
THE THERMAL MODEL OF AN ACTUAL 

BUILDING 
 
 
 

The methodology and the methods described in the previous chapter are here applied for testing 
modelling hypothesis in the framework of the thermal analysis of an actual building. The 
experimental device (ETNA building) is described in section 3.1. Next section includes 
experimental design matters and a qualitative analysis of the recorded data. The adopted 
modelling hypothesis and the resulting model are presented in section 3.3. Model validation and 
diagnosis results are contained in next sections. Two French modelling-simulation environments 
have been used: CLIM2000 and CA-SIS. Results for the first one are included in this chapter. On 
the contrary, CA-SIS results are presented in Annex B. 

 
 
 

3.1. THE EXPERIMENTAL DEVICE 
ETNA is an experimental building that has been specifically designed by EDF for empirical model 

validation purposes (see Fig. 3.1). It is 30° south oriented and it is located near Paris. It is formed by 
two identical and symmetrical testing rooms (41.3 m3), surrounded all over, the south facade 
excepted, with guard zones where the air temperature can be controlled (see Fig. 3.2). The testing 
room with an almost 100% convective heating device (test cell in the following), is here considered. 
The air in the room can be stirred in order to ensure a homogeneous air temperature distribution. The 
construction of the building is deemed to be known with good confidence (see [31] for a detailed 
description). The building has been designed to minimise both thermal bridges effects and 
infiltrations. The permeability measurements carried out allows considering that thermal losses 
generated by infiltrations are negligible. 

 
Figure 3.1. Photograph of the ETNA building. 
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Figure 3.2. ETNA building sketch (horizontal cutting) 

 

The test cell components and the walls composition are presented in Tables 3.1. and 3.2 
respectively. The floor and the ceiling are described in figures 3.3 and 3.4 respectively. 

Component Surface 
( m 2 ) 

Slop (°) Orientation 
(°S) 

Controlled 
Environnement 

South wall 7.25 90 30 - 
West wall 11.81 90 120 Computer room 
North wall 7.00 90 210 Cell bis 
East wall 10.17 90 290 Air-lock 
Ceiling 16.28 0 - Attics 
Floor 16.28 180 - Basement 
South glazing 0.967 90 30 - 
South framework 0.665 90 30 - 
East glazing 0.967 90 290 Air-lock 
East framework 0.665 90 290 Air-lock 
Door 1.89 90 210 Cell bis 

Table 3.1. Test cell components. 
 

North wall 7.0 m2 East wall 10.17 m2 Glazing 0.967 m2 
Plasterboard 0.013 m Plasterboard 0.01 m Glass 0.04 m 
Honeycomb 0.046 m Polystyrencl:2 0.08 m Air3 0.007 m 
Plasterboard 0.013 m Air4 0.01 m Glass 0.04 m 
Styrodur 0.06 m HollowBlocks 0.2 m   
  Air4 0.01 m   
  Polystyrencl:2 0.08 m   
  Plasterboard 0.01 m   
South wall  7.25 m2 West wall  10.17 m2 Frameworks 0.665 m2 
Plasterboard 0.01 m Plasterboard 0.01 m ColonialTimber 0.06 m 
Polystyrencl:
2 

0.08 m Polystyrencl:2 0.08 m   

Air1 0.01 m Air1 0.01 m Door 1.89 m2 
Hollowblock
s 

0.2 m Hollowblocks 0.2 m HollowDoor 0.044 m 

Facing 0.02 m Facing 0.02 m   
Table 3.2. Walls composition description from an outward direction. 
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Figure 3.3. Floor composition. 
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Figure 3.4. Ceiling composition. 

 

The thermophysical properties of the test cell materials are included in Table 3.3. The optical 
properties of the windows glazing are given in Table 3.4. 

Material λ (w.m-1.K-1) ρcp(kJ.m-3.K-1) Material λ (w.m-1.K-1) ρcp(kJ.m-3.K-1)
Air1 0.071 1.24 HollowBlocks 1.052 1140.0 
Air2 0.762 62.5664 HollowDoor 0.090 275.0 
Air3 0.063 1.24 Honeycomb 0.287 34.974 
Beams1 0.382 522.56 Particleboards 0.170 840.0 
Beams2 0.211 277.535 Plasterboard 0.350 680.0 
ColonialTimbe
r 

0.250 1680.0 Polyamide 0.300 1200.0 

Concrete 1.750 2090.0 Polystyrenecl:2 0.043 18.0 
Concrete* 1.390 1957.0 Polystyrenecl:3 0.040 21.6 
Facing 1.150 1657.5 Styrodur 0.032 21.6 
Glass  1.150 2025.0 Styrodur2505 0.029 42.0 
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GlassWool  0.042 8.8    
Table 3.3. Thermophysical properties of the materials. 

 

 (°) 0 10 20 30 40 50  60  70 80 90 
α 0.104  0.104  0.107  0.110  0.114  0.119  0.123  0.127  0.121  0.000 
τ 0.683  0.680  0.672  0.656  0.633  0.597  0.540  0.442  0.220  0.000 

Table 3.4. Glazing optical laws (a = solar absorptance; t = solar transmittance). 
 

3.2. THE EXPERIMENTAL DESIGN AND THE DATA 

Test cell configuration and recorded data 
The experiment carried out in the test cell from 25/02/95 to 19/03/95 (23 days) is here analysed. 

The test cell configuration during the experiment was as follows: 

− Guard temperatures were controlled at approximately 10°C. 

− Internal heating was conducted by an electrical heat source. A binary pseudo random sequence 
was used to drive heater operation (on/off). The smallest heating period was 5 minutes, and 
the nominal value was 500W (see Fig. 3.7). 

− The air inside the test cell was stirred using a fan to warrant temperature homogeneity. The fan 
is on when the heating power is on, and it is off otherwise. 

All data were measured at a 5 minutes time step, except solar radiation which was measured at 1 
minute time step. The data were then averaged and under-sampled at 1 hour time step. 

The following meteorological variables were actually measured: 

− Global solar radiation on the south vertical wall - 30°W oriented wall (see Fig. 3.6). 

− Outdoor dry bulb temperature and guard temperatures (see Fig. 3.5). 

The variables recorded inside the test cell are: 

− Heating power (see Fig. 3.7). 

− Indoor air temperature, that was taken as a space average of several shielded dry-bulb 
temperature sensors (see Fig. 3.8). 

− The mean radiant temperature, which was taken as the average of three black globe 
temperature sensors (see Fig. 3.8). 

− The wall indoor surface temperatures, which were taken as the average of several surface 
temperature sensors (see Fig. 3.9). 
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Figure 3.5. Outdoor temperature measurements (dashed line) and air temperature in the test cell 
surrounding spaces (continuous lines). 
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Figure 3.6. Solar irradiance on the south vertical wall. 
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Figure 3.7. Heating power measurements. 
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Figure 3.8. Indoor air temperature (continuous line) and mean radiant temperature measurements (dashed 
line). 
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Figure 3.9. Indoor wall surfaces temperatures. 

Qualitative data analysis 
In Fig. 3.10 are represented black globe temperature data against indoor air temperatures. The 

differences observed between them are always less than 1°C, the black globe temperature being most 
of the time colder than the air temperature. So small differences are a little bit surprising because 
greater ones are observed between the air and the indoor test cell surfaces. To understand this 
behaviour, it must be noticed that: 

− The measured black globe temperature does not represent the mean radiant temperature. The 
last one can be certainly estimated from the globe temperature, the air temperature and the 
indoor air velocity data, but it cannot be directly taken as the spatial average of the globe 
temperatures as supposed before. The temperature of the globe thermometer is the result of 
both the radiative exchanges between the globe and the wall surfaces, and the convective 
exchanges between the globe and the indoor air. 

− The indoor air temperature is measured using non-ventilated shielded (solar radiation 
protection) temperature sensors. Consequently, the recovered air temperature data could be 
corrupted (underestimated) by the wall surfaces temperatures, which are most of the time 
colder than the air temperature. 

Probably both, the black globe temperature and the air temperature date are close to the so called 
« resultant temperature », which take values in between the actual mean radiant and indoor air 
temperatures. 
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Figure 3.10. Air temperature data vs. Black globe temperature data. 

 

The wall surface temperatures (indoor side) are represented against the measured indoor air 
temperatures in figures 3.11 (south, west, north, west and ceiling) and 3.12 (floor). It can be seen that 
most of the time the temperature of the wall surfaces is smaller than the air temperatures. This is a 
reasonable behaviour because: 

− one of the main inputs to the test cell is the heating power; 

− the heating system can be assumed to be a pure convective heater (the air inside the cell was 
stirred); 

− the outdoor wall surfaces are in contact with an air mass at approximately 10°C (thermal 
guards), or lower (south wall). 

Due to a higher inertia, the thermal behaviour of the floor surface is slightly different from the one 
of the others wall surfaces. The proportion of time during which the floor surface temperature is 
higher than the air temperature increases, and the difference between both quantities can be greater 
than 2-3°C. 
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Figure 3.11. Air temperature data vs. Wall surfaces temperature data. 

 

10 12 14 16 18 20 22 24
10

12

14

16

18

20

22

24

Air temperature (°C)

Floor temperature (°C)

 

Figure 3.12. Air temperature data vs. Floor surface temperature data. 
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Spectral analysis of the data 
The analysis of the model inputs spectra allow to identify the frequency ranges over which the 

building and hence the model are mainly excited. It is within these ranges that one should expect 
exhibit any modelling error. Figure 3.13 shows the estimated density power spectra for the three main 
building inputs: the outdoor air temperature, the solar radiation flux (global, horizontal), and the 
heating power. In figure 3.14, their respective normalized cumulative spectra are shown. The analysis 
of such statistics leads to the following conclusions: 

− Outdoor temperature. More than 97% of the variance is concentrated over the frequency range 
[0, 1/10 h-1] (see Fig. 3.14). It exhibits a clear 24 h periodicity, as well as spectral peaks (variance 
concentration) at 1/12 h-1 and 1/6 h-1 frequencies (see Fig. 3.13). 

− Solar radiation. More than 95% of the variance is concentrated over the frequency range [0, 1/7 
h-1] (see Fig. 3.14). As in the previous case, it exhibit a clear 24 h periodicity and a spectral peak 
at 1/12 h-1 . 

− Heating power. It is an input with significant spectral power over the whole frequency range. 
95% of its variance is concentrated over the frequency interval [0, 1/3 h-1]. Up to frequency 1/10 
h-1, no more than 50% of the signal variance is found. 
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Figure 3.13. Inputs data spectral density. 
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Figure 3.14. Inputs data cumulative spectra. 

 

The spectra of the temperature time series describing the building response (air temperature, black 
globe temperature and wall indoor surface temperatures) are represented in figures 3.15 (density 
power spectra) and 3.16 (normalized cumulative spectra). From their analysis, it can be concluded 
that: 

− The building acts as a low-pass filter. 95% of the variance of the wall surface temperatures is 
distributed over the [0, 1/20 h-1] frequency range (see Fig. 3.16). The variance of both, the air 
and the black globe temperatures, is mainly concentrated over the range [0, 1/10 h-1]. 

− All the observed temperature time series are 24 h  and  12 h  harmonic (see Fig. 3.15). 
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Figure 3.15. Outputs data spectral density. 
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Figure 3.16. Output data cumulative spectra. 
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3.3. THE NOMINAL TEST-CELL MODEL 
Clim2000 [24] is a modelling-simulation environment developed by EDF for thermal buildings 

analysis purposes. It is based on electrical analogy and models are supplied as electrical networks. 

Modelling hypothesis 
The main modelling hypotheses are classified by physical phenomena as follows: 

− Heat conduction phenomena: a) Heat conduction is considered as a one dimensional process, 
thermal bridges are not modelled. An equivalent homogeneous-multilayer wall is used for 
representing both the floor and the ceiling (see Table 3.4). b) Constant thermophysical 
properties are assumed for all the materials in the test cell (see Table 2 for nominal values). c) 
Perfect contact between layers is supposed. 

− Long-wave radiative exchanges and heat convective flux at the wall-air interfaces: The global 
convective-radiative flux at any solid-air interface is estimated as: ( )φ = −h T Tsurface air  where h is 

a constant exchange parameter taking into account both radiative and convective exchanges. 
Standard values for coefficients h are adopted. 

− Indoor air and heating power treatment: a) The indoor air temperature is supposed to be 
homogeneous. Hence, the air is represented by a single node in the model. b) Air infiltrations 
are assumed to be zero. c) The output from the heater is assumed 100% convective. The 
electrical heating power is entirely transmitted to the indoor air node. d) The heater inertia is 
neglected. 

− Solar radiation processor: a) The solar irradiance on the vertical south facade is calculated from 
the available horizontal global and diffuse irradiance data. Diffuse solar radiation is assumed to 
be isotropic, and the soil reflectivity is supposed to be 0.2. b) The assumed glazing optical 
properties are given in Table 3.4. c) Incoming solar radiation is supposed to be completely 
absorbed by the floor. 

 
Floor 16.28 m2 Ceiling  16.28 m2 
Concrete* 0.05 m Plasterboard 0.013 m 
Styrodur2505 0.05 m GlassWool 0.20 m 
Polyamide 0.002 m Air2 0.10 m 
Concrete 0.065 m Particleboard 0.021 m 
Beams2 0.07 m   
Beams1 0.05 m   
Polystyrencl:3 0.03 m   

Table 3.4. Walls composition description from an outward direction. 

The model 
The electrical network created by Clim2000 has been transformed in a state-space model of the 

form: 

)()(

)()()(

tHTty

tEUtAT
dt

tdTC

=

+=
 

where )(tT  is the vector of temperatures at the nodes of the discretisation mesh, )(tU  is the vector of 
the model input variables, and )(ty  represents the model output. C  is a diagonal matrix including 
thermal capacities at the discretisation nodes, A  is a squared symmetric matrix including parameters 
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describing thermal exchanges among nodes, and E  is a matrix  that contains system-environment 
coupling parameters .  Matrix H  is formed by zeros and ones, it serves to select model outputs. 

The model output is the indoor air temperature. Model input variables are : 

− the solar irradiance on the test cell vertical south façade ; 

− the heating power ; 

− the outdoor air temperature; and 

− the air temperature in every guard zone (5 zones). 

The model includes 170 modifiable parameters: 

 Parameters 
Component Geometry Thermophysica

l 
Optical Total 

Floor 8 16 1 25 
North wall 5 10 1 16 
West wall 6 12 1 19 
South wall 6 12 2 20 
East wall 8 16 1 25 
Ceiling 5 10 1 16 
South window 6 12 4 22 
West window 6 12 2 20 
Door 2 4 1 7 
    170 

Table 3.5. Number of parameters in the model. 

Blind model validation 
Model simulations have been carried out using hourly data in figures 3.5 to 3.7 as input variables.  

The differences between indoor air temperature measurements and simulations are represented in 
figure 3.17. The model underestimates the indoor air temperature during the first four days, 
afterward it globally overestimates it. Temperature underestimations and temperature 
overestimations are respectively associated to the free-floating and to the heating periods.  

The mean value of the residuals is –0.22°C and its standard deviation is 0.72°C.  The model is 
unable to correctly reproduce both the static and the dynamic thermal behaviour of the test cell. 
Figure 3.18 includes the power spectral density of the residuals. It shows that residuals variance is 
mainly concentrated at low frequencies.  
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Figure 3.17. Residuals time evolution 

 

Figure 3.18. Residuals power spectral density 

For checking model validity purposes, parameters uncertainty is assumed to be: 
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where  ioθ  represents the nominal value of the thi  parameter. 

Model output bounds over the parameter set above are calculated by the standard Monte Carlo 
method described in section 2.2.  Figure 3.19 includes the time evolution of the upper and lower 
model output bounds (continuous lines) as well as measurements. It can be seen that measurements 
are most of the time (59%) outside the model uncertainty bands.  The nominal model is unable to 
represents the thermal behaviour of the test cell.  

 

Figure 3.19.  Results from checking model validity: Model output uncertainty bands (continuous lines) and 
measurements (crosses) comparison. 

3.4. PARAMETERS SENSITIVITY ANALYSIS 
Indoor air temperature sensitivity to every model parameter has been calculated by the sensitivity-

equation method (see section 2.3 and Annex A).  

Test cell components 
Tables 3.6 to 3.14 present sensitivity analysis results for the different test cell components: the floor, 

the north wall, the west wall, the south wall, the east wall, the ceiling, the south window and the west 
window. They include active model parameters related to each one to the test cell components: 

Column Contents 
1 Parameters Group 
2 Parameters in the group 
3 Mean time value of the indoor air temperature sensitivity to the 

parameter (see equation X) 
4 Standard deviation of the indoor air temperature sensitivity to the 

parameter (see equation X) 
5 Distance (see equation X) 
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The following criteria have been applied to choose active parameters and to form groups: 

− A parameter iθ  is assumed to be active when  

1.022 ≥+= iiid σµ  

iµ  and iσ  are respectively the mean time value and the standard deviation of the indoor air 

temperature sensitivity to the  thi  parameter.  

− Parameters in a same group { }mjis θθθ=π   L   show correlation degrees greater that 
0.8. That is, they verify 

8.0, ≥ρ∀ ijji  

where ijρ  is the linear correlation (see equation 2.29) between the sensitivity time series 

associated to parameters iθ  and jθ . 

Main conclusions from results in tables 3.6 to 3.14 are: 

 FLOOR. Three groups of active parameters concerning thermal conduction have been 
identified (F1, F2 and F3), as well as a group concerning convection at the floor-indoor air 
interface (F4) and a group related to solar absorption (F5). This is one of the test cell 
components offering a priori greater possibilities for validation. 

 NORTH WALL. Three groups of active parameters have been identified. The first one 
includes parameters related to the heat conduction through the wall (N1), the second one 
concerns heat convection exchanges between the wall and the indoor air (N2), and the third 
one is the wall surface (N3).  

 WEST WALL. All the active parameters related to the west wall modelling are strongly 
correlated among them; they are merged in a same group (W1).  This component does not 
offer many possibilities for validation. 

 SOUTH WALL. Active parameters related to heat conduction through the wall form a unique 
group (S1). In the second group (S2) are merged the outdoor convective coefficient and the 
optical efficiency of the wall surface. The third group (S3) contains the heat convective 
coefficient at the wall-indoor air interface 

 EAST WALL. Four groups of active parameters have been identified. The first and the second 
one include parameters associate to the heat conduction modelling through the wall (E1 and 
E2). Next groups (E3 and E4) contain parameters related respectively to the heat convection at 
the wall-indoor air interface and to the solar radiation absorption.  

 CEILING. Heat conduction is represented by three groups of parameters (C1, C2 and C4), 
and the third group includes the wall surface optical efficiency. 

 SOUTH WINDOW.  Active parameters of this component form three groups. The first one 
(SW1) represents heat conduction, the second one (SW2) concern solar absorption and the 
third one (SW3) is related to the heat convection between the glazing and the indoor air.  
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 WEST WINDOW. Active parameters related to heat conduction are merged with outdoor 
convective parameters in a same group (WW1). The wall-indoor air convective coefficient 
defines the second group (WW2). 

 DOOR. All its active parameters are in the same group (D1). This component does not offer 
many possibilities for validation. 

 
 

Group Parameters Mean STD Distance 
Concrete* - Thermal capacity -0.1560 0.6379 0.6567 
Concrete* - Thickness -0.1426 0.6281 0.6440 

F1 

Surface  -1.3044 0.8734 1.5699 
Styrodur  - Thermal conductivity -0.6931 0.1813 0.7164 F2 
Styrodur  - Thickness  0.6285 0.1627 0.6492 
Beams2 - Thermal conductivity  -0.1032 0.0352 0.1091 
Polystyrene  - Thermal conductivity  -0.2219 0.0890 0.2391 

F3 

Polystyrene  - Thickness  0.2042 0.0797 0.2192 
F4 Indoor h- coefficient -0.0586  0.4687 0.4724 
F5 Optical efficiency  0.1251  0.0718 0.1442 

Table 3.6. FLOOR. Active model parameters and groups. 

Group Parameters Mean STD Distance 
Styrodur  - Thermal conductivity -0.5850 0.1197 0.5971 N1 
Styrodur  - Thickness  0.5322 0.1090 0.5432 

N2 Indoor h- coefficient -0.8620 0.1673 0.8781 
N3 Surface  -0.6836 0.1631 0.7028 

Table 3.7. NORTH WALL. Active model parameters and groups. 

Group Parameters Mean STD Distance 
Polystyrene  - Thermal conductivity -0.8826 0.1803 0.9009 
Polystyrene  - Thickness  0.8550 0.1649 0.8217 

W1 

Surface  -1.0121 0.2091 1.0334 
W2 Indoor h- coefficient -0.8620 0.1673 0.8781 

Table 3.8. WEST WALL. Active model parameters and groups. 

Group Parameters Mean STD Distance 
Polystyrene - Thermal conductivity -0.8131 0.1840 0.8337 
Polystyrene - Thickness 0.7418 0.1695 0.7609 

S1 

Surface  -0.9265 0.2446 0.9583 
Outdoor h-coefficient -0.2036 0.1096 0.2312 S2 
Optical efficiency 0.1767 0.1189 0.2130 

S3 Indoor h-coefficient  -0.8620 0.1673 0.8781 
Table 3.9. SOUTH WALL. Active model parameters and groups. 

Group Parameters Mean STD Distance 
Polystyrene *- Thermal conductivity -0.2700 0.0637 0.2775 E1 
Polystyrene *- Thickness 0.2454 0.0558 0.2517 
Polystyrene  - Thermal conductivity -0.2573 0.0587 0.2639 
Polystyrene  - Thickness  0.2346 0.0539 0.2407 

E2 

Surface  -0.5335 0.1472 0.5534 
E3 Indoor h- coefficient -0.8620 0.1673 0.8781 
E4 Optical efficiency  0.0921 0.0630 0.1116 

Table 3.10. EAST WALL. Active model parameters and groups. 
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Group Parameters Mean STD Distance 
Plasterboard - Thermal capacity -0.0128 0.1464 0.1469 C1 
Plasterboard - Thickness -0.0077 0.1450 0.1452 
GlassWool - Thermal conductivity -0.6898 0.1438 0.7047 C2 
GlassWool - Thickness 0.6272 0.1316 0.6409 

C3 Optical efficiency  0.1280 0.0884 0.1555 
C4 Surface  -0.6428 0.1989 0.6729 

Table 3.11. CEILING. Active model parameters and groups. 

Group Parameters Mean STD Distance 
Air - Thermal conductivity -0.2326 0.0825 0.2468 
Air - Thickness 0.2120 0.0753 0.2250 
ColonialTimber - Thermal conductivity -0.1804 0.0734 0.1947 
ColonialTimber - Thickness 0.1631 0.1107 0.1972 
Glass surface  -0.7230 0.2605 0.7685 

SW1 

Frame surface  -0.3492 0.1298 0.3725 
Glass optical efficiency 0.2700 0.1865 0.3282 
Frame optical efficiency 0.1525 0.0969 0.1807 

SW2 

Outdoor h-coefficient -0.7638 0.1838 0.7857 
SW3 Indoor h-coefficient -0.8620 0.1673 0.8781 

Table 3.12. SOUTH WINDOW. Active model parameters and groups. 

Group Parameters Mean STD Distance 
Air - Thermal conductivity -0.2314 0.0472 0.2362 
Air - Thickness 0.2110 0.0431 0.2153 
Outdoor h-coefficient -0.3130 0.0641 0.3195 
Glass surface  -0.6983 0.1414 0.7125 
Frame surface  -0.3498 0.0715 0.3570 
ColonialTimber - Thermal conductivity -0.1843 0.0376 0.1881 

WW1 

ColonialTimber - Thickness 0.1660 0.0359 0.1698 
WW2 Indoor h-coefficient -0.8620 0.1673 0.8781 

Table 3.13. WEST WINDOW. Active model parameters and groups. 

Group Parameters Mean STD Distance 
HollowDoor - Thermal conductivity -0.4464 0.0900 0.4554 
HollowDoor - Thickness 0.4052 0.0825 0.4135 
Outdoor h-coefficient -0.1003 0.0202 0.1023 

D1 

Surface  -0.6327 0.1258 0.6451 
D2 Indoor h-coefficient -0.8620 0.1673 0.8781 

Table 3.14. DOOR. Active model parameters and groups. 

Whole test cell 
Sensitivities correlation analysis has also been carried out on the whole set of active parameters. 

Results achieved are included in Table 3.15.  Ten “quasi-independent” groups of active model 
parameters have been identified (meta-groups in the table, MG below): 

 MG1, MG2 and MG3.  These three independent meta-groups contain only parameters related 
to the heat conduction though the floor. 

 MG4. The only parameter in this meta-group is the heat convective coefficient between 
indoor vertical walls and the indoor air.  
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 MG5. This meta-group merges the coefficient describing heat convection between the floor 
and the indoor air with two parameters concerning heat conduction through the ceiling. 

 MG6. Active model parameters related to the heat conduction through the south wall as well 
as those concerning heat conduction through the south window are included in this meta-
group. 

 MG7. Optical properties of the floor, the south wall, the east wall and the ceiling appear in 
this meta-group. It also includes the heat convective coefficient associated to the south wall – 
outdoor air interface. 

 MG8. This meta-group merges a high number of active parameters related to heat 
conduction.  Those of the door, the west wall and the west window as well as part of 
parameters involved in the heat conduction modelling through the west wall, the east wall 
and the ceiling. 

 MG9. The surface of the north wall, the surface of the ceiling and the thermal conductivity of 
the polystyrene layer in the east wall are this group. It must be noticed that some statistical 
correlation remains among parameters in this meta-group and those in the previous one. 

 

 Test-cell 
components 
groups 

 
Chosen representative 

Meta Group n°1 F1 Floor surface area 
Meta Group n°2 F2 Floor styrodur layer conductivity 
Meta Group n°3 F3 Floor polystyrene layer conductivity 
Meta Group n°4 N2 Indoor vertical walls convective coefficient 
Meta Group n°5 F4 

C1 
Indoor floor/air convective coefficient 

Meta Group n°6 S1 
SW1 

South wall surface area 

Meta Group n°7 F5 
S2 
E4 
C3 

Solar efficiency of the south wall (outdoor surface) 

Meta Group n°8 N1 
E1 
C2 
WW1 
W1 
D1 

Ceiling Glass Wool layer conductivity 

Meta Group n°9 N3 
E2 
C4 

North wall surface area 

Table 3.15. TEST CELL. Active model parameters groups and group representatives. 

 

Model validation possibilities on the available data are quite limited. At most, modelling of the 
following parts and phenomena could be tested: 

− Heat conduction through the floor. 

− Heat convection between vertical walls and the indoor air.  
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− Heat conduction through the south façade without making distinction between the wall 
and the window. 

− Heat conduction through the west, east, north and ceiling test cell envelope. 

− Part of the solar processor. 

Preliminary diagnosis 
 

For preliminary diagnostic purposes, only one parameter by meta-group is taken into account.  
Principal components analysis is thus carried out on the sensitivity time series associated to the 
parameters in the third column of Table 3.15*:   

[ ]TMGMGMG tststst )(~)(~)(~)( 921 L=ζ  

The spectral decomposition of the )(tζ - covariance matrix leads to 

T

t

t

T VVdtttW

f

o

Σ=ζζ= ∫ )()(  

where Σ  is a )99( ×  diagonal matrix including the singular values of )(tζ , and V  is a )99( ×  
squared matrix including the corresponding eigenvectors placed by columns. 

The vector )(tζ  then can be written as )()( tVXt =ζ , where [ ]TtxtxtxtX )()()()( 921 L=  is 
the vector of decomposition coefficients resulting from projection of )(tζ  onto the eigen-basis V . The 
time evolution of the components of )(tX  is represented in figure 3.20.  It can be seen that only the 
first two components show significant fluctuations. 

                                                           
* Remember that a meta-group parameter representative represents the effect of the whole set of parameters 
in the meta-group. We note them MG1 to MG9 in the following. 
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Figure 3.20. Time evolution of the decomposition coefficients resulting from the projection of )(tζ  onto the 
eigen-basis V  (Thick line: First coefficient; Discontinuous line: Second coefficient). 

Table 3.16 includes some statistical analysis on the )(tX  components: the time mean value, the 
standard deviation, the contribution to the whole energy in )(tζ  (see equation 2.42) and the linear 
correlation between residuals and the )(tX  components. It can be seen that the first component 
explains more than 87% of the whole energy in )(tζ . In addition, it shows a significant effect on the 
model static behaviour (remember that the main problem in the model concern the static regime) as 
well as a high degree of correlation with residuals.  

 Mean value Standard 
Deviation 

Contribution to 
the whole 

variance of )(tζ  

Linear 
correlation 

with residuals 

)(1 tx  -2.3091 0.6293 0.8740 -0.6010 

)(2 tx  -0.1751 0.7445 0.0891 -0.1786 

)(3 tx  0.0098 0.3526 0.0189 0.0085 

)(4 tx  -0.0054 0.2817 0.0121 0.4942 

)(5 tx  -0.0078 0.1505 0.0035 0.1849 

)(6 tx  -0.0019 0.1020 0.0016 0.0167 

)(7 tx  0.0007 0.0667 0.0007 0.2088 

)(8 tx  0.0002 0.0224 0.0001 0.1386 

)(9 tx  0.0002 0.0141 0.0000 -0.0688 

Table 3.16.  Statistical analysis on the )(tX  components. 

Model output changes due to small variations in active model parameters can be thus approached 
by (see section 2.3): 
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where  ioθ  and iθ∆  represent respectively the nominal value and the variation of the thi  model 
parameter. The previous equation shows that the effect of parameters on the model output are 
weighted by the elements { } 9,,11 L=iiv  of the first eigenvector of the basis V .  

In Figure 3.21, the first eigenvector { } 9,,11 L=iiv  has been represented. It can be seen that: 

− The first meta-group of parameters is the one showing a greater contribution to the model 
output variations. It includes active model parameters related to heat conduction through 
the first layer of the floor. 

− Meta-groups 6 and 4 have also a significant effect on the model output. The first one 
represents heat conduction through the south facade (wall and window included), and the 
second one is the convective coefficient at the indoor air–vertical walls interfaces. 

−  Next meta-groups in order of significance are meta-groups 2, 8 and 9.  Meta-group 2 
includes parameters related to heat conduction through the floor, and meta-groups 8 and 9 
represent heat conduction through the north, east, west and ceiling test cell envelope. 

Improving the model performances likely involves significant changes in the values of these 
parameters. This probably means that modelling of thermal conduction as well as heat convection at 
the wall-air interfaces have to be reviewed. Such preliminary conclusions must be however confirmed 
by optimisation techniques.  
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Figure 3.21. First eigenvector of the basis V . The meta-groups MG1 to MG9 are represented by the model 
parameters in the third column of Table 3.15. 

3.5. FREE MODEL PARAMETERS ESTIMATION AND DIAGNOSIS 
Fitting the model on the available data has been performed by the following three methods: 

− The heuristic bounding methods (HBM) described in section 2.4. It allows finding the 
parameters domain leading to model output uncertainty bands showing a significant 
overlapping with measurements uncertainty intervals. 

− The random search algorithm (SRA) described in section 2.4. It is a stochastic algorithm for 
searching the global minimum of the residuals variance on a given parameters set. The 
parameter set we are using is the one proposed by the HBM. 

− The Gauss-Newton method (GNM) described in section 2.4. It considers the problem of 
finding a local minimum of the residuals variance from an initial parameter vector. The 
initial parameter vector we are using is the one of nominal values. 

In all the cases, free model parameters considered for optimisation are the meta-groups 
representatives in Table 3.15. The solutions proposed by the different methods are summarised in 
Table 3.17.  Looking at the results from the HBM, we can conclude that improving the model mainly 
means: 

− Reviewing the floor model. The  HBM estimations indicate that the thermal conductivity 
of some floor layers as well as its area must be significantly increased (see results for meta-
groups MG1 and MG3). 

− Reviewing heat convection modelling between the test cell walls and the indoor air. It 
seems that values for convective coefficients at the indoor vertical walls have to be 
significantly reduced (see results for meta-group MG4). 

− Reviewing heat conduction modelling through the test cell envelope (ceiling and south, 
east, west and north facades). The HBM estimations (see results for meta-groups MG6, 
MG8 and MG9) indicate that heat conduction through the envelope is clearly 
underestimated by the nominal model. 

− Reviewing the solar processor or the heat convection between the south wall and the 
outdoor environment (see results for the meta-group MG7).  

 

Meta-
Group 

Representative Nominal 
value 

HBM SRA GNM 

MG1 Floor surface area 16.28 m2 [19.45,  20.22] 20.05 19.96 
MG2 Floor styrodur layer 

conductivity 
0.029 W.m-1.K-1 [0.0234,  0.0305] 0.026 0.0313 

MG3 Floor polystyrene layer 
conductivity 

0.040 W.m-1.K-1 [0.0801 , 0.0753] 0.08 0.0968 

MG4 Indoor vertical walls 
convective coefficient 

9.1 W.m-2 [3.9059 , 3.6326] 3.56 1.666 

MG5 Floor-indoor air convective 
coefficient 

5.88 W.m-2 [4.6327 , 4.4079] 4.49 4.68 

MG6 South wall area 7.25 m2 [10.58,   16.34] 14.01 15.87 
MG7 South wall solar 0.30  [1.0137,  0.6581] 0.822 1.357 
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absorptivity (outdoor side) 
MG8 Ceiling glass wool layer 

conductivity 
0.042 W.m-1.K-1 [0.0623,  0.0674] 0.066 0.1015 

MG9 North wall area 7.0 m2 [12.06, 12.48] 12.53 10.75 
Table 3.17. Results from optimisation. HBM = Heuristic Bounding Method; SRA = Search Random 

Algorithm; GNM = Gauss-Newton Method. 
 

In figure 3.22, we have represented model output uncertainty bands corresponding to the HBM 
solution as well as measurements uncertainty intervals (±0.5°C).  A good enough overlapping is 
observed between simulations and measurements uncertainty bands. 

Concerning diagnosis, results from the SRA and the GNM methods lead to identical conclusions 
than HBM even thought GNM propose a slightly different solution. Both RSA and GNM solutions 
lead to simulations showing residuals with zero mean and 0.39°C standard deviation value. 
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Figure 3.22. Comparison between measurements uncertainty intervals (dotted lines) and model output 
bounds over the HBM parameter set (continuous line).
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3.6. CONCLUSION  
 

The methodology as well as the methods described in chapter 2 has been used here for empirical 
validation of the ETNA test cell model created by CLIM2000. Main conclusions from this validation 
exercise are: 

 The data quality. The spectral analysis of the available data show that most of the 
information contained in the experiment concerns the low-frequency behaviour (daily) of 
the test cell. High dynamics parts (hourly) of the test cell model cannot be checked from 
this experiment. 

 The nominal model performances. It has been created using the ETNA test cell 
specifications supplied in [31]. Usual modelling hypothesis have been adopted. Residuals 
analysis show than the nominal model is able to reproduce neither the static nor the 
dynamic behaviour of the test cell. Main disagreements between measurements and 
simulations are observed at the low-frequency range. 

 The parts of the model that could be tested on the available data. Sensitivity analysis 
indicates that model validation possibilities on the available data are quite limited. At 
most, modelling of the following parts and phenomena could be tested: 

− Heat conduction through the floor. 

− Heat convection between vertical walls and the indoor air.  

− Heat conduction through the south façade without making distinction between the 
wall and the window. 

− Heat conduction through the west, east, north and ceiling test cell envelope. 

− Part of the solar processor. 

 Preliminary diagnosis based on PCA. Principal components analysis provides some 
useful information for diagnosis. It indicates that model performances improvement likely 
involves modifications of the heat conduction modelling through the test cell envelope as 
well as of the representation of the heat convection at the walls – indoor air interfaces. 

 Diagnosis from optimisation. Comparisons between nominal and estimated values for 
model parameters point out heat conduction through the test cell envelope as being the 
main problem in the model. Thermal conductivities values and/or wall surfaces have to 
bee significantly increased to improve the model response. Such parameters displacements 
could be explained by nominal test cell material properties not fully matching the final as-
constructed conditions of the test cell. They could also be explained by un-modelled 
thermal bridges if nominal values for material properties supplied in [31] are right. In 
addition, it seems that indoor convective coefficient values must to be reviewed. 

This example of application, show how model parameters space analysis is a useful and powerful 
tool for empirical validation. In particular, diagnosis possibilities are largely increased in comparison 
with residual analysis techniques. 



 



 

 
 
 
 
 

  

SUMMARY AND CONCLUSIONS 
 

 

The methodology for empirical model validation developed in the framework of the IEA Task 22 
involves two main steps: checking model validity and diagnosis.   

First step aims to test the model performances by identification of significant disagreements 
between measurements and simulations. It rest both on residuals analysis techniques and on 
comparisons between model outputs uncertainty bands and measurements uncertainty intervals. The 
pertinence of the mathematical tools underlying this step is today well recognised.  

Second step intends to explain the differences observed between model simulations and 
measurements. This is a difficult task that has been overlooked (or performed in a very subjective 
way) for a long time. First attempts to establish methods for rigorous model diagnosis are relatively 
new. They mainly concerns the so-called “residuals analysis techniques (RAT)” whose aim is to 
identify model input variables strongly correlated with residuals. Results from RAT could help the 
modellers to sort the model inputs and to target those responsible of the major part of the error over a 
given frequency area. This approach to diagnosis has been largely used in the 90’s. However, it 
presents two severe limitations:  firstly, it cannot be applied to non-linear models; secondly, going up 
from inputs-residuals correlations to modelling hypothesis is frequently impossible. A new approach 
for models diagnosis has been thus proposed here. It rests on the analysis of the model parameters 
space. The main objective is to identify the changes in parameters values that are required for a 
significant model behaviour improvement. Diagnosis is then provided by comparison of such results 
with the knowledge we have about both the actual system and the model itself.  

The IEA diagnostic approach involves three main parts: 

 Sensitivity analysis. The principal aim of this part if to identify the parts of the model as well as 
physical phenomena that can be really tested on the available data. Sensitivity calculations, 
correlation analysis and principal components analysis are the main tools proposed to reach 
this objective. Some preliminary elements for diagnosis are already supplied by principal 
components analysis at this stage. 

 Optimisation. Parameters estimation techniques are the main mathematical tool we are 
proposing to guide model diagnosis. Free model parameters values allowing significant 
residuals reduction are here identified by fitting the model on the available data. Diagnosis 
mainly involves comparisons between estimated and nominal model parameters values. Three 
different algorithms for optimisation have been proposed and discussed. 

 Diagnosis. The possible causes of discrepancies between measurements and simulations are 
finally elucidated using: 

− Some knowledge about the model. The main information required concerns the 
phenomena considered in the model and the parameters involved in their representation. 

− Modelling hypothesis analysis. Foreseeable model parameter values for each one of the 
hypothesis in the model, as well as for their negative statement, are desired but difficult to 



 

  

obtain. Instead, some knowledge about what kind of model parameter displacements are 
expected when inadequate modelling hypothesis can be used. For instance, un-modelled 
thermal bridges (when significant) will lead to systematic increasing of thermal 
conductivity values when fitting the model to the data. 

− Parameter changes analysis. It involves comparisons between estimated and nominal 
model parameters values. Large differences are expected for parameters involved in 
phenomena which are not correctly represented in the model. 

The combination of these three elements of judgement should lead to know reasons for the 
observed model errors, and to suggest model improvements. 

Concerning the mathematical methods underlying the IEA empirical model validation 
methodology, some new contributions can be pointed out: 

− An efficient computational method has been developed for differential sensitivity analysis 
involving large scale systems of differential equations with a large number of parameters. 
It is based on both the well known sensitivity-equation method and the theory of balanced 
realisations.  

− Principal components analysis has been introduce as a simple and useful tool for active 
model parameters identification and grouping. In addition, it has been proven that it can 
supply some preliminary elements for diagnosis. 

− A new algorithm for fitting models on the data has been proposed: the heuristic bounding 
method (HBM). It seems to us a promising way for modelling diagnostic purposes. Main 
reason is that HBM allows incorporation of data uncertainty and it is conceived for reliable 
global solution searching. In addition, HBM computer implementation is quite easy and it 
does not require any simulation code modification.  

Two main computer tools have been developed within the IEA Task 22 for empirical model 
validation purposes: MED and MEDLab. Please, contact the authors for obtaining the corresponding 
β-versions and the user manuals. 

The IEA Task 22 methodology has been applied for model checking and diagnosis in the 
framework of the thermal analysis of the ETNA test cells. Two different modelling-simulation 
environments have been used: CLIM2000 and CA-SIS. Such examples of application show how model 
parameters space analysis is a useful and powerful tool for empirical validation. In particular, 
diagnosis possibilities are largely increased in comparison with residual analysis techniques. In both 
cases, comparisons between nominal and estimated parameters values pointed out heat conduction 
through the test cell envelope as being the main problem in the models. Thermal conductivities values 
and/or wall surfaces areas have to be significantly increased to improve the models response. Such 
parameters displacements could be explained by nominal test cell material properties not fully 
matching the final as-constructed conditions of the test cell. They could also be explained by un-
modelled thermal bridges if assumed nominal values for material properties are right.   

Even though we are convinced that our proposal is a step forward in empirical model validation, it 
is not immune to criticism. Main limitations of the proposed methodology are related to the data and 
the experiment quality as well as to the diagnosis required expertise. In practice, it is frequently 
noticed that the information contained in the available experiments is quite limited for model 
validation purposes. Usually only a few parts and phenomena in the model can be really tested on the 
available data.  Concerning diagnosis, going up from the model parameters displacements to the 
modelling hypothesis to be changed requires a real expert knowledge on both the studied system and 
the model. 
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Abstract 
An efficient computational method has been developed for differential sensitivity analysis 
involving large systems of differential equations with a large number of parameters. It is based on 
both the sensitivity-equation method and the theory of balanced realisations. The sensitivity-
equation method is first used to generate the whole set of sensitivity models (one state-variable 
model per parameter). A sensitivity model, as well as its corresponding balanced realisation, is 
characterised by three matrices of the same dimension than those in the nominal model: the state 
matrix, the command matrix and the output matrix. However, such matrices remain unchanged 
regardless of the parameter under consideration. Consequently, a single calculation suffices to 
obtain the balanced realisation of all the sensitivity models. Such representation allows ranking the 
state variables according to their degree of controllability/observability. A low-dimension 
balanced realisation is then obtained by only keeping the more controllable/observable state 
variables. The sensitivity problem solution is finally obtained by time integration of the low-
dimension sensitivity models instead of the corresponding full-dimension ones. 

 
 

NOMENCLATURE 
 

A  Matrix [ n n× ] of heat exchanges among the nodes of the discretisation mesh 
B  Command matrix [n n× ] 
C   Matrix [ n n× ] of heat capacities 
c M( )  Heat capacity, J/m3K 
F  State matrix [n n× ] 
k(M)  Thermal conductivity, W/mK 
O  Output matrix [q n× ] 
P  Transformation matrix [n n× ] 
r(M,M' )  Distribution of radiative coefficients of exchange  
T M t( , )  Temperature field at point M  and time t , K 
T t( )  Vector [ n×1 ] of temperatures at the nodes of the mesh of discretisation, K 
U t( )  Vector [ p ×1 ] of forcing functions or input variables 
r
v M( )  Fluid velocity field, m/s 



Wc  Gramian of controllability, matrix [n n× ] 
Wo  Gramian of observability, matrix [n n× ] 
X t( )  Vector [ n×1 ] of state variables 
Y t( )  Vector [ p ×1 ] of output variables 
y tl ( )  Output variable 
λ i  i th  Hankel singular value 
r
θ  Vector [m×1 ] of model parameters (

r
θo , nominal values) 

θ k  k th  model parameter 
Θk M t( , )  Sensitivity of T M t( , )  to the parameter θ k  
Θ k t( )  Sensitivity of the vector T t( )  to the parameter θ k  
σ( , )M t  Heat sources  (W/m3 for M ∈Ω ; W/m2 for M ∈∂Ω ) 
σ l k t, ( )  Sensitivity of y tl ( )  to the parameter θ k  
σ k t( )  Sensitivity of the vector Y t( )  to the parameter θ k  
Ω  System domain Ω Ω Ω= ∪o ∂  
∂Ω  System frontier (∂ ∂ ∂Ω Ω Ω= ∪1 2 ) 
∂Ω1  Part of the frontier with Dirichlet boundary conditions 
ψ( , )M t  Solicitations field (W/m3 for M o∈Ω ; W/m2 for M ∈∂Ω ) 
 
Special symbols 
 
L  Heat operator for coupled thermal transfers  
B  Boundary conditions operator 
 
Superscripts 
 
~  Approximation 
 T  Transposed matrix 
&  Time derivative 

 

1. INTRODUCTION 
Sensitivity analysis studies the effect of parameter variations on the behaviour of a dynamic system. It 
is recognised as an important step for getting an enhanced understanding of the systems performance, 
and for providing guidance for optimal design purposes. Therefore it proved its effectiveness in 
uncertainty propagation studies, as well as in models validation and models calibration. A rather 
complete state of the art on the techniques of sensitivity analysis is brought in [1]. One can distinguish 
two main families of sensitivity methods: those that follow a deterministic approach, on the one hand, 
and those that adopt a statistical procedure, of another. The well-known techniques of differential 
sensitivity analysis are in the first group. Its characteristic is to examine the first-order derivatives of 
the model response with respect to its parameters. According to the complexity of the problem, the 
derivatives either will be calculated in an approximate way (parameter-perturbation methods) or exact. 
One is interested here in the exact methods, among which one distinguishes the so called direct and 
adjoint methods.  
 The direct method (sensitivity-equation method) involves differentiation of the model 
equations with respect to the parameters. This leads to a model of sensitivity per studied parameter. 
The resolution of the sensitivity problem then involves the integration of as many systems of 
differential equations than there are parameters. One sensitivity model integration leads to the time 
evolution of all dependent variables of the model with respect to a single parameter. 



 The theoretical bases of the adjoint method are established in [2], where a general formulation, 
applicable to all kinds of models (linear, non-linear, dynamic, static), is brought. This method starts by 
defining the model response as a functional of the dependent variables of the model. A system of 
adjoint equations (adjoint model) is then built from a differentiated form of the original model. In 
contrast to the direct model, a single integration of the adjoint model leads to the sensitivity of the 
model response to all the parameters. However, the adjoint model depends on the model response and 
it must be solved anew for each model dependent variable. 
 In practice, for about de same amount of computation, the adjoint method gives de sensitivity 
of a functional of the model variables to all the parameters, while the direct method gives the 
sensitivity of all variables to a single parameter. The direct method is computationally efficient only 
when effects of few parameters on a large number of variables are being evaluated, while the adjoint 
method adapts better to the contrary case. These two techniques become ineffective when the analysis 
of sensitivity involves both a large number of dependent variables and a great number of parameters, 
the problem being all the more significant as the dimension of the original model is large. Common 
thermal modelling problems often involve large systems of differential equation with a large number 
of uncertain parameters. A numerical approach that makes it possible to extend the application of the 
sensitivity-equation method to such kind of problems is here proposed.  
 The second section presents the mathematical formulation of the problem of sensitivity. The 
most typical parameters are initial conditions, time-invariant coefficients, time-variant coefficients, 
forcing functions, sampling intervals, round-off errors, etc. In this paper, the attention is focused on 
time-invariant coefficients. Furthermore, one addresses to linear thermal systems. Despite such a 
limitation, however, there still exists a vast class of problems of practical importance that can be 
studied assuming linearity. The third section describes the fundamentals of the computational method 
that is proposed for solving large-scale sensitivity problems. It rests on the theory of balanced 
realisation, which makes it possible to strongly reduce the number of differential equations in a model 
without introducing a significant loss of precision. It must be noticed that the number of sensitivity 
models to integrate remains equal to the number of parameters concerned with the analysis. However, 
their dimension is strongly reduced and the computing time hence decreases significantly. The method 
is all the more effective as the dimension of the original model and the number of studied parameters 
is large. The last section includes an example of application that shows the effectiveness of the 
suggested method.  

2. MATHEMATICAL FORMULATION OF THE PROBLEM 
Let Ω  be a geometrically bounded thermal system in ℜ3 , and let ∂Ω  be its frontier. It is assumed that 
the system domain Ω  can be split-up in a finite number of solid or/and fluid subdomains with 
invariant geometry. Each one of the subdomains is formed by a continuous and monophasic medium 
whose thermophysical properties (thermal conductivity, density, specific heat, transfer coefficients, 
etc.) are space continuous functions. Furthermore, such properties are assumed to be time invariant 
and independent of the temperature. Incompressible and low viscosity fluids are supposed. In addition, 
the velocity field is assumed to be time invariant and known. 
 Energy transfer in Ω  can take place by the following mechanisms: heat conduction, 
convection and radiation. It is assumed that a linear model linking-up radiative flux to the thermal 
field can be used for thermal radiation exchanges representation. 

 2.1. The nominal model 
 In the framework of the previous hypothesis, the only knowledge of the evolution of the 
temperature field is enough to define the thermodynamic state of the system in any point and at any 
moment. One presents below the most general possible equations within the limits of the allowed 
assumptions. All the other forms of the equations of evolution are particular cases. The energy 
conservation equation is then written in the operational form: 
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L  is the heat operator for coupled thermal transfers. It is given by [3]: 
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where one can recognise the heat transferred by conduction (first term), by mass transfer (second term) 
and by thermal radiation (last term). k M( )  is thermal conductivity at the point M . 

r
u M( )  represents 

the product of the heat capacity c M( )  by the speed vector 
r
v M( ) . r M M( , ' )  is a distribution of 

radiative coefficients of exchange. It takes into account the geometric configuration factors between 
the differential elements dM  and dM ' , their optical properties and those of the optical way which 
separates them [3, 4].  
 B  is the operator of the boundary conditions. At points M ∈ ⊂∂ ∂Ω Ω1  verifying Dirichlet 
boundary conditions, B  is the identity operator. Otherwise ( M ∈ ⊂∂ ∂Ω Ω2 ), B  is given by [3]: 
 

 [ ] [ ]B T M t k M T M t n M r M M T M t dM( , ) ( ) ( , ) ( ) ( , ' ) ( ' , ) '= − ∇ + ∫
r r

Ω

    (3) 

 
 Ψ( , )M t  represents the so-called solicitations field. For any point M o∈Ω  inside the system, 
it generally includes two terms: 
 

 Ψ
Ω

( , ) ( , ) ( , ' ) ( ' , ) 'M t M t r M M T M t dM= + ∫σ
'

      (4) 

 
The first one represents the sources or sinks of heat, and the second one is the radiative flux coming 
from the system environment Ω' . For any point M ∈∂Ω2 , Ψ( , )M t  is given by:  
 

 [ ]Ψ
Ω

( , ) ( , ) ( , ' ) ( ' , ) ' ( ) ( , ) ( ) ( , ) ( )M t M t r M M T M t dM k M T M t u M T M t n M= + + ∇ −∫σ
'

r r r  (5) 

 
where one recognises equation (4) increased of a heat conduction flux and a term due to the transport 
of mass. Such a term is zero everywhere except at the fluid inlets and outlets. Finally, at any point 
M ∈∂Ω1 , Ψ( , )M t  is equal to the prescribed temperature. 

 In practice, the objective for modelling could be focus on some intensive or extensive 
quantities at some points in Ω  instead of the complete temperature field. Such quantities are called 
observation variables or outputs. The time evolution of the observation variable y tl ( )  can be written 
as: 
 
 y t J T M t G M tl l l( ) ( ( , )) ( ( , ))= + ψ        (6) 
 
where Jl  and Gl  are linear and real functionals. 

 2.2. The sensitivity models 
 One notes { }

r
Lθ θ θ θ= 1 2 m  the vector of the model parameters. Among the parameters 

one finds those that define the system geometry, those that determine its thermal or optical properties, 



the velocity field, etc. The sensitivity of T M t( , )  and y tl ( )  to the parameter θ k  are respectively 
defined by:  
 

 Θk
k

M t T M t( , ) ( , )
≡
∂
∂θ

  and σ
∂
∂θl k
l

k

t y t
, ( ) ( )

≡     (7) 

 
They are first-order estimations of the effect of a weak variation of the parameter θ k  on T M t( , )  and 
y tl ( ) , the other parameters being maintained constant. The equation that describes the time evolution 
of Θk M t( , )  is obtained by simple differentiation of the equations (1) to (5). One get:  
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with: 
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According to (2) and (3), Lk  and Bk  are given by:  
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It must be noticed that the different terms in equations (9) and (10) are evaluated at the point 

r
θo  of the 

space of the parameters (vector of the nominal values). Therefore T M t( , )  represents the solution of 
(1) for 

r r
θ θ= o .  

 In the same way, the equation describing the time evolution of σ l k t, ( )  is obtained by simple 
differentiation of (6):  
 
 σ ηl k l k l kt J M t M t, ,( ) ( ( , )) ( , )= +Θ        (11) 
 
with:  
 

 η
∂
∂θ

∂ ψ
∂θl k

l

k

l

k

t J T M t G M t
, ( ) ( ( , )) ( ( , ))

= +        (12) 

 2.3. The finite dimension formulation 
 Since no general theory is currently available for the analytic solution of partial differential 
equations, approximate methods and numerical solutions are the only practical alternative that scientist 
and engineers usually resort to solve this type of equations. Spatial discretisation of equations (1) or 
(8) leads to a system of ordinary differential equations (state-space model) of the form: 
 



 
C t A t t
t J t t

k

k

&( ) ( ) ( )
( ) ( ) ( )
Z Z

Y Z
= +

= +

ψ

η
         (13) 

 
where C  is the matrix [ n n× ] of heat capacities at the nodes of the discretisation mesh, A  is the 
matrix [ n n× ] of heat exchanges between nodes (numerical approach of L ) and J  is a matrix of 
dimension [ q n× ]. These three matrices (calculated for 

r r
θ θ= o ) remain unchanged regardless of the 

parameter under consideration. Consequently, a single calculation suffices to obtain the nominal 
model and all the sensitivity models. 
 In the nominal model Z( ) ( )t T t=  and Y( ) ( )t Y t= , where T t( )  is the vector [ n ×1] of 
temperatures at the nodes of the discretisation mesh and Y t( )  is the vector [ q ×1] of the output 
variables. ψ 0 ( )t  [ n ×1] and η0 ( )t  [ q ×1 ] represent the effect of the solicitations on the mesh nodes 
and on the output variables respectively. They usually take the following form: 
 
 ψ 0 ( ) ( )t EU t=    η0 ( ) ( )t GU t=       (14) 
 
where U t( )  [ p ×1] is the forcing functions or inputs vector. E  and G  are matrices of dimension 
[ n p× ] and [q p× ] respectively. 
 In the kème  sensitivity model ( k m= 1, ,L ), Z( )t  and Y( )t  are given by:  
 

 Z( ) ( ) ( )t t dT t
dk

k

= =Θ
θ

  Y( ) ( ) ( )t t dY t
dk

k

= =σ
θ

     (15) 

 
As for ψ k t( )  and ηk t( ) , they are given by  
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       (16) 

and 

 η
∂
∂θ

∂
∂θk

k k

t J T t G U t( ) ( ) ( )=








 +









        (17) 

 
where all the derivatives are evaluated for 

r r
θ θ= o .  

 

3. NOMINAL AND SENSITIVITY MODELS REDUCTION 
The resolution of the problem of sensitivity involves the time integration of 1+m  state-variable (Eq. 
13), the nominal model and the sensitivity models, which include as many ordinary differential 
equations than there are capacitive nodes in the discretisation mesh. Consequently, their size increases 
with the complexity and the dimension of the system geometry, as well as with the accuracy we are 
looking for. Sensitivity analysis could then be computationally intensive and limited by computer 
performance. In order to handle such kind of problems, an approximation based on model size 
reduction techniques is here proposed. 
 The objective of model size reduction techniques is to replace the state model (13) by a low-
dimension one without introducing a significant loss of precision. A satisfactory representation of the 
full-dimension model behaviour is then get with a limited number of calculations. Model reduction has 
been the subject of many investigations and a great number of reduction techniques have been 
proposed in the past. A rather complete state of the art is brought in [5]. The most efficient methods 
are the so-called truncation methods. They consist in representing the state variables of the problem as 
a linear combination of the eigenfunctions of a particular basis (e.g. modal basis [6, 7, 8], balanced 
realisation [9] and singular basis [10, 11]). If the projection basis allows highlighting a small number 



of significant directions, the solution can then be approached using a reduced number of 
eigenelements. A reduced r -order model is get by the following procedure: 
 
− Separation of the pseudo-steady and dynamic terms of the state variables: Z Z Z( ) ( ) ( )t t tg d= + . The 

pseudo-steady term represents the state variables behaviour when the thermal capacity of the 
system is assumed to be zero. It follows that: Zg kt A t( ) ( )= − −1ψ . So, the dynamic term and the 
outputs verify: 

 

 
& ( ) ( ) & ( )

( ) ( ) ( ( ) ( ))

Z Z
Y Z
d d k

d k k

t C A t A t

t J t t JA t

= +

= + −

− −

−

1 1

1

ψ

η ψ
       (19) 

 
Using the formulation (19) instead of equations (13) presents some clear advantages for model 
reduction purposes. Practice indicates that to yield accurate results for small values of r  it is often 
necessary starting reduction from (19). Otherwise, the convergence rate with r  will be much lower 
(cf. [5]). 

 
− Calculation of a pertinent equivalent full-order model. Let P  be a non-singular matrix of 

dimension [ n n× ] containing, column wise placed, the vectors p p pn1 2, , ,L  of a given 
basis. Let us consider the transformation Zd t PX t( ) ( )= , where X t( )  is the vector [ n×1 ] of the 
decomposition coefficients of Zd t( )  on the chosen basis. From equation (13), it follows the 
equivalent state model: 

 
& ( ) ( ) & ( )
( ) ( ) ( ( ) ( ))
X t FX t B t
t OX t t JA t

k

k k

= +

= + − −

ψ

η ψY 1
        (20) 

 
with F P C AP= − −1 1  (state matrix), B P A= − −1 1  (command matrix) and O JP=  (output matrix). 
 
− Full-order model truncation. Assuming vectors p p pn1 2, , ,L  have been ordered in a 

convenient way, a reduced-order model of dimension r  is then obtained as 
 
~& ( ) ~~( ) ~

& ( )
~( ) ~ ~( ) ( ( ) ( ))

X t FX t B t

t OX t t JA t
k

k k

= +

= + − −

ψ

η ψY 1
        (21) 

 
where the state matrix ~F  [ r r× ] is formed by the r  first columns and rows of F , the command 

matrix ~B  [ r n× ] includes the r  first rows of B , and the output matrix ~O  [ q r× ] is formed by the 
r  first columns of O . 

 It should be noticed that obtaining the whole set of reduced models is not more expensive in time 
than obtaining only one them, the matrices ~F , 

~B  and ~O  being the same ones for all the models of 
the set. 

 
Practice indicated that the selection of the transformation matrix P  has a significant influence on the 
quality of the resulting low-dimension model, the balanced realisation [9] being one of the best 
choices. It is based on the central notions of controllability and observability. Assuming eigenvalues 
of matrix C A−1  to be strictly in the left half-plane, then we can define the controllability gramian and 
the observability gramian of (19) as: 
 



 W e A A e dtc
C A t T C A tT≡ − −

∞

∫ ( ) ( )- -1 11 1

0

( )( )  and  W e J Je dto
C A t T C A t≡

∞

∫ ( ) ( )- T -1 1

0

 

 
respectively. By considering the corresponding matrix differential equations it is easily verified that 
Wc  and Wo  satisfy the following Lyapunov equations [12]: 
 

 
( ) ( ) ( )( )
( ) ( )
C A W W C A A A
C A W W C A J J

c c
T T

T
o o

T

− − − −

− −

+ + =

+ + =

1 1 1 1

1 1

0
0

      (22) 

 
Both Wc  and Wo  are definite positive matrices of dimension [ n n× ]. It is easily demonstrated that 
they depend on the state-space co-ordinates. If it is changed to Zd t PX t( ) ( )=  for some non-singular 
P , the controllability and observability gramians become: 
 

 W P W Pc x c
T

( ) ( )= − −1 1  and W P W Po x
T

c( ) =       (23) 

 
 A balanced realisation is obtained for a matrix P  which verifies the following equation: 
 
 W Wc x o x( ) ( )= = Σ          (24) 
 
where [ ]Σ = diag nλ λ λ1 2 L  is a diagonal matrix containing the Hankel singular values, which 
are fundamental invariants of the system. Such transformation may be obtained in different ways [9, 
13, 14]. The method proposed by Laub [14] is one of the most efficient ones. The matrix Wc  is first 
decomposed as (Cholesky factorisation method): 
 
W RRc

T=   ( R = low triangular matrix)      (25) 

The product R W RT
o  is then a definite positive matrix. It can be transformed in a diagonal matrix by 

solving the following symmetric eigenvalues problem: 
 
R W R U UT

o
T= Σ 2  with UU IT =        (26) 

The matrix P  we are looking for is given by (see [14] for demonstrations):  
 
 P RU= −Σ 1 2/           (27) 
 
 The components of X t( )  (the state vector of the balanced realisation) are arranged so as the 
elements of the matrix Σ  appear in the decreasing order λ λ λ1 2 0≥ ≥ ≥ >L n . The balanced 
realisation is then truncated keeping the more controllable and observable state variables; those 
associated to the greatest r  Hankel singular values. The controllability/observability gramian Σ  
brings a way for measuring both the sensitivity of the state variables to the forcing signals and the 
sensitivity of the model outputs to the state variables. Hence, elimination of the state variables 
showing a weak degree of controllability/observability should be a good way for model size reduction. 
 It has been proved in [15] that the L∞ -norm of the error introduced by truncation of the 
balanced realisation can be bounded by « twice the sum of the tail » of the Hankel singular values 
spectrum: 
 



 ( )G j G jr L r r n( ) - ( )    +ω ω λ λ λ
∞
≤ + + ++2 1 2 L      (28) 

 
where G j( )ω  and G jr ( )ω  are, respectively, the transfer functions matrix of the full-order and the r -
order models. This error bound gives strong theoretical support to the observation that truncated 
balanced realisations so as λ λr r+ >>1  give very good results in practice. 

4. STEP BY STEP SOLVING PROCEDURE 
The proposed procedure for solving large-scale sensitivity problems is briefly summarised here. 
 
Step 1. Spatial discretisation of equation (1): calculate the matrices C , A  and J . 
 
Step 2. Calculation of the balanced realisation: 

− Calculate the gramians Wc  and Wo  by solving the Lyapunov equations (22). 
− Calculate of the transformation matrix P  using the procedure described by equations (25) 

to (27). 
− Calculate of the matrices F P C AP= − −1 1 , B P A= − −1 1  and O JP= . 

 
Step 3. Truncation of the balanced realisation: 

− Choose the reduction order r  so as λ λr r+ >>1 . 
− Calculate the low-dimension matrices ~F , 

~B  and ~O . 
 
Step 4. Time integration of the low-dimension nominal model: 
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~( ) ~ ~( ) ( ( ) ( ))

X t FX t B t
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 with ψ 0 ( ) ( )t EU t=  and η0 ( ) ( )t GU t= . Estimate T t( )  and its time derivative: 
 

 ~( ) ~ ~( ) ( )T t PX t A to= − −1ψ  
 
 where ~P  is formed by the first r  columns of P . 
 
Step 5. Time integration of the low-dimension sensitivity models ( k m= 1, ,L ): 
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~( ) ~ ~( ) ( ( ) ( ))

X t FX t B t

t OX t t JA t
k

k k

= +

= + − −

ψ

η ψY 1
 

 
 where ψ k t( )  and η k t( )  are given by equations (16) and (17) respectively. 

5. EXAMPLE  
Thermal building analysis usually leads to large-scale models including a large number of parameters. 
Hence, the sensitivity of the thermal behaviour of a simple building to the thermophisical and optical 
properties of its components, as well as to the parameters defining its geometry, has been chosen to 
illustrate the advantages of the proposed computational method. 
 ETNA is an EDF’s experimental building that has been specifically designed for empirical 
model validation purposes (see Fig. 1). It is formed by two identical and symmetrical testing rooms 
(41.3 m3). Only one of them is here considered (test cell in the following). Its southern facade is in 
contact with the outdoor environment, while the other ones (west, north, east, floor and ceiling) are 



surrounded with thermal guards at controlled ambient temperature. One can refer to [16] for a detailed 
description of the test cell (geometry, walls compositions, materials properties, etc.).  
 A test cell model of the form (13) was generated using the building simulation environment 
M2m [17]. The main physical phenomena considered are: heat conduction in walls, heat convective 
exchanges at the wall-air interfaces, long wave radiative exchanges among building surfaces, short-
wave radiative exchanges with the environment (solar radiation effects), and air infiltration. The model 
is formed by 421 linear ordinary differential equations. It includes 8 inputs variables (the outdoor air 
temperature, the air temperature in the guards zones, the solar flux density on the south facade, and the 
heating power which is supplied to the indoor air by means of a 100% convective heater) and 421 
output variables (the temperatures at the nodes of the discretisation grid). The total number of model 
parameters is 207, among which one finds the surface of the different walls and windows, the 
thickness of the layers of the walls, the thermophysical properties of the materials (conductivity and 
heat capacity), the optical properties of the different surfaces, the walls-air heat convective 
coefficients, etc. 
 The hourly data from the experiment carried out from the 25/02/95 to 19/03/95 (23 days) are 
here used for simulation purposes. Figure 2 includes the time evolution of the outdoor air temperature, 
as well as the air temperature in the thermal guards (controlled at 10°C). Figure 3 represents the solar 
flux density on the south facade. The heating power was provided by an electric source whose 
operation was controlled by a pseudo-random binary sequence (see Fig. 4). Furthermore, Figure 5 
shows the time evolution of the test cell indoor air temperature (simulations from the nominal model). 
 Results achieved for one of the model outputs are here presented. The reduced sensitivity of 
the indoor air temperature to the variations of the parameter θ k  is defined by:  
 

 σ ∂
θ ∂θk
k k

t y t* ( ) ( )
( / )

=
1

  

 
The units are identical to those of the output variable (°C). When the goal of the analysis is to establish 
a hierarchy among the parameters of the model according to their influence on the output, the 
comparisons in term of reduced sensitivity are more interesting than those in terms of sensitivity. One 
notes ~ ( )*σ k t  the reduced sensitivity estimated starting from a 6-order reduced model.  
 The average values and the standard deviations of the reduced sensitivities make it possible to 
analyse the influence of the parameter on the static and dynamic behaviour of the cell test respectively. 
One notes mk  and ~mk  the average values of σ k t

* ( )  and ~ ( )*σ k t , respectively. Similarly, sk  and ~sk  
represent the standard deviations of σ k t

* ( )  and ~ ( )*σ k t . The relative errors: 
 

 m m
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k
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can be used as a first measure of the quality of the proposed approach. 
 Figure 6 represents the relative errors on the average values versus the corresponding average 
values mk  ( k = 1 207, ,L ), and Figure 7 includes the relative errors on the standard deviations versus 
the standard deviations sk  ( k = 1 207, ,L ). In both cases, the most significant errors are associated to 
the least influential parameters. The maximum relative error on the average is lower than 0.06%; it 
corresponds to a parameter with a weak influence on the static behaviour of the cell test. Similarly, the 
maximum relative error on the standard deviation (1.2%) is associated to a parameter showing a 
negligible effect on the dynamic behaviour. 
 The results in figures 8 and 9 are representative of the most unfavourable conditions (worst 
results). That is, they are associated to a not very significant parameter (m Ck = °0 01.  and 
s Ck = °0 035. ). The relative errors on the average and on the standard deviation are −0 0147%.  and 
116%.  respectively. Figure 8 represents the time evolution of the reduced sensitivity, while Figure 9 
shows the time evolution of the differences observed between the reduced sensitivity calculated 



starting from the full-order model and that which is obtained with the 6-order balanced realisation. It 
can be seen that errors due to the model size reduction are less than ± × °−2 10 3 C .  
 Figures 10 and 11 are representative of the best results achieved. The relative errors on the 
average and the standard deviation are −0 001%.  and 0 0001%.  respectively. The error due to the 
replacement of the complete model by the reduced model is lower than ± × °−3 10 6 C . 
 Results of intermediate quality are provided in figures 12 and 13. The relative errors on the 
average and the standard deviation are 0 013%.  and 0.41%  respectively. The differences between the 
simulations coming from the full-order model and those from the 6-order one are lower than 
± × °−3 10 4 C . 
 Whatever may be the parameter, the errors introduced by the truncation of the balanced 
realisation remain negligible. The problem which consists in integrating 207 state models including 
each one 421 of ordinary differential equations (ode) can then be replaced by the integration of 207 
low-dimension models (6 ode by model) without introducing a significant loss of precision. This 
implies a strong reduction (98% approximately) of the calculating time required. 

6. CONCLUSIONS AND PERSPECTIVES  
An efficient numerical method for solving large-scale differential sensitivity problems has been 
proposed. The sensitivity-equation method is first applied to generate the whole set of sensitivity 
models (one state-variable model per parameter). A sensitivity model, as well as its balanced 
realisation, is characterised by three matrices of the same dimension than those in the original model: 
the state matrix, the command matrix and the output matrix. However, these matrices remain 
unchanged regardless of the parameter under consideration. Consequently, a single calculation suffices 
to obtain the balanced realisation of all the sensitivity models. Such representation allows ranking the 
state variable according to their degree of controllability and observability. A low-dimension balanced 
realisation is then obtained by keeping the more controllable and observable state variables. The 
sensitivity problem is finally solved by time integration of as many low-dimension sensitivity models 
than there are parameters instead of the corresponding full-order models.  
 The interest of the method increases significantly with the dimension of the nominal model 
and with the number of parameters. An example has been used to illustrate its effectiveness. The 
nominal model includes 421 ordinary differential equations and 207 physical parameters. So, the 
sensitivity problem involves 87147 differential equations (207 systems of 421 ordinary differential 
equations). It is however shown that a 6-order balanced realisation (207 systems of 6 ode) provides 
very high quality results. This implies a reduction of the calculating time from approximately 98%.  
 The paper addresses to linear models. However, the method should be extended to non-linear 
systems for sensitivity models remain linear and they share the same state, command and observation 
matrices. In contrast to the linear case, the coefficients of such matrices vary with time and special 
reduction techniques, as those proposed in [18], will then be required. 
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FIG. 1. ETNA building. 
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FIG.2. Time evolution of the outdoor air temperature and time evolution of the air 

temperature in the thermal guards. 
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FIG. 3. Solar flux density on the south vertical facade. 
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FIG. 4. Heat power supplied to the test cell. 
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FIG. 5. Time evolution of the indoor air temperature (simulations from the nominal model. 
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FIG. 6. Relative errors (%) on the sensitivity average value. 
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FIG. 7. Relative errors (%) on the sensitivity standard deviation. 
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FIG. 8. Time evolution of the reduced sensitivity (worst case). 
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FIG. 9. Differences between the sensitivity calculated from the full-dimension model and that 

which is obtained with the 6-order balanced realisation (worst case). 
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FIG. 10. Time evolution of the reduced sensitivity (best case). 
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FIG. 11. Differences between the sensitivity calculated from the full-dimension model and that 

which is obtained with the 6-order balanced realisation (best case). 
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FIG. 12. Time evolution of the reduced sensitivity (intermediate case). 
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FIG. 13. Differences between the sensitivity calculated from the full-dimension model and that 

which is obtained with the 6-order balanced realisation (intermediate case). 
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ABSTRACT 

Two French building energy programs were developed by
the French utility company. The first one is intended to produce
economic studies and be used as a research tool. The second
one is more dedicated to engineering offices as a tool adapted
to their constraints in thermal studies. To give confidence to
the end-users and to ensure the quality of the software
programs results, a validation procedure has been in place for
many years. In Part 1, we presented the use of analytical tests
with the first software. In this part, we focus on the empirical
validation work proposed by the French team in the framework
of a project led by an international organization dealing with
energy savings. A new approximation based on parameter esti-
mation methods has been proposed for purposes of modeling
error diagnosis. It has been tested in providing a diagnosis to
discrepancies between simulations and measurements in an
actual building and has proved to be very efficient.

INTRODUCTION

A building energy software program (EDF/DER 1998)
was developed by the French utility company and has been
operational since June 1989. It allows the behavior of an entire
building to be simulated. Its main objective is to produce
economic studies, pertaining to energy balances over long
periods, as well as more detailed physical behavior studies
including nonlinear problems and varied dynamics. It can also
be used for evaluating the efficiency of a new component, such
as a heating system, ventilation system, or a new insulator,
glazing, etc., because it is very easy to implement a new
elementary model into it, reproducing numerically the physi-
cal behavior of the new component to be evaluated. This kind
THIS PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN 
part without written permission of the American Society of Heating, Refrigerating 
Opinions, findings, conclusions, or recommendations expressed in this paper are t
questions and comments regarding this paper should be received at ASHRAE no 
of software is one of the best means in terms of cost and time
to evaluate a new building component. 

The second software program (EDF/DER 1997), also
developed by the French utility company, is dedicated to
HVAC system comparisons. It is based on a building simula-
tion program widely used in the USA (Klein and Beckman
1996), and a specific model library has been developed to
simulate HVAC systems and allow easy comparisons between
them. This software seems to be an answer to the problems of
engineering offices, enabling analysis and accurate predic-
tions of energy consumption in buildings within a relatively
short time scale. This software also offers a three-step
approach corresponding to the different levels of knowledge
in a project—sketch, basic, and advanced.

It is necessary to show the end-users that these softw
programs are able to give good predictions. To do this, 
have tried to develop a specific validation procedure. T
aim of this validation work is to give confidence in th
results produced by the code. In addition to that, it is obvio
that, without any validation work, the simulated results w
not be taken into account with great confidence by decis
makers in a discussion more political than technical. Th
work was started at the beginning of the 1990s. In the Pa
of this paper, we described the validation procedure used
the French software programs, with a conceptual idea of 
validation and a presentation of the strengths and weakne
of each stage in this procedure. The reader is invited to lo
at this part in order to see in which step of the validati
procedure the empirical validation is included. We al
presented the use of analytical verification tests with the f
software and a comparison between analytical solution a
simulated results.
Validation of Two French Building 
Energy Programs 
Part 2: Parameter Estimation 
Method Applied to Empirical Validation

Gilles Guyon, Ph.D. Elena Palomo, Ph.D.
Gilles Guyon is a research engineer in the Research and Development Division, Electricité de France, Moret/Loing, France. Elena Palomo
is a researcher at l’Ecole Nationale des Ponts et Chaussées, Marne-la-Vallée, France.
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Part 2 of this paper deals with empirical model validation
matters. Empirical validation should, in principle, compare a
true model derived from experiments with a computerized
model. It is not, as is analytical validation, limited to isolated
processes in simple constructions, but deals with real-world
complexity comparable to situations encountered when the
simulation code is used in design studies. Empirical validation
is, therefore, the most widely used technique for validating
transient simulation programs. Beyond any technical consid-
eration, it provides a guarantee of user confidence and enables
the modeler to improve his/her understanding of the system
being modeled and to improve the model itself. The aim of
empirical validation is twofold: First, one needs to detect if the
model is able to describe correctly the observed reality, that is,
to check whether the model satisfies some a priori validation
criteria (checking model validity); and, second, the causes of
the observed differences between measured and predicted
values must be identified in order to improve the model if
required (diagnosis). In this paper, attention is focused on
methods of diagnosing modeling errors. It includes a brief
presentation of the state of the art, a description of the meth-
odology we are proposing, and an example of application
based on the experiment carried out in the test cells owned by
the French utility company that has developed both software
programs (Girault and Delille 1995).

STATE OF THE ART

Two significant techniques using linear analysis tools
have been proposed in the past for diagnosis of modeling
errors in building thermal analysis. 

The first one consists of a direct comparison of the
system’s global physical parameters (first time constant a
static gains) estimated from measurements with the o
calculated by means of the analyzed model. To obtain s
information from experimental data, identification tech
niques can be applied. A dynamic linear model, in state sp
form (Jensen 1993) or in a black-box form (Candau and P
1993), is identified on data and then reduced to its charac
istic time constant and its static gains. To get such inform
tion from the knowledge model, the use of spect
decomposition techniques has been proposed in Candau
Piar (1993) and a different technique based on simulation
Jensen (1993).

The second technique deals with residuals (differen
observed between measurements and simulations) ana
and was first proposed in Palomo et al. (1991). Because mo
simulation aims at reproducing the effect of the external inf
ences that drive the experiment, one expects a part of the re
uals to be sensitive to these inputs. Hence, the propo
technique seeks to quantify the contribution of each syst
input to the residuals. Such information helps modelers to s
the inputs and to target the one responsible for the major 
of the error. Efforts to improve the model should then focus
the way the model takes into account this particular input.
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The technique proposed in Palomo et al. (1991) a
Jensen (1993) is based on nonparametric spectral analys
residuals. The contribution of each input to the residuals
analyzed by means of the squared partial coherence fu
tions. The squared partial coherence for the ith input is a
normalized measure at frequency ω of the linear cross-corre-
lation existing between residuals and input i after allowance
is made for the effect of the other input variables. It tak
values from 0 to 1. Zero values mean that no correlat
exists between the ith input and the residuals, unity value
mean that residuals could be completely recovered from 
input, and values between 0 and 1 correspond to situat
where residuals can be partially predicted from the ith input.
Such information helps modelers to sort the inputs and
target the one responsible for the major part of the error o
a given frequency area. This is the method reviewed a
accepted in Ramdani (1994) and Ramdani et al. (199
where spectra and partial coherence functions are simu
neously used to quantify the contribution of each model inp
to the residuals variance.

The technique proposed in Martin and Watson (1993
slightly different, although it also deals with residuals ana
sis. A dynamical linear and stationary multiple inputs, sing
output (MISO) model is identified on the residuals/inp
data. Such a model is intended to predict the residuals t
evolution, and it is then used to estimate the contribution
each model input to the total variance of the residuals. T
error desegregation technique, dealing with the total resi
als variance, does not allow separation of time sca
(frequency ranges), and it does not provide as much inform
tion as the previous ones.

Residuals analysis techniques have been widely use
the 1990s, especially in the framework of a British-Fren
collaboration between the French utility company that h
developed the two software programs and a well-know B
ish research center in the field of buildings. Although th
appear capable of diagnosing some of the modeling er
(Tabary and Ramdani 1995), the authors believe them
suffer some limitations. The most important ones are:

1. They are based on linear analysis tool, and, conseque
they cannot be applied to diagnosis of errors in nonlin
models.

2. They are mainly based on analysis of the causal relat
ships between residuals and model inputs (black-b
approximation). They give information about input-outp
relationships in the models but not about their structur
This is the reason why no clear indications of how 
improve models are given often by means of residu
analysis techniques.

These limitations lead us to propose another kind 
approximation to the model diagnosis problem, which 
mainly based on parameter estimation techniques and
described and discussed in the next section.
SE-99-06-03
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MODELING ERRORS DIAGNOSIS VIA 
MODEL PARAMETERS SPACE ANALYSIS

The parameters are the closest elements to the model
structure and to the underlying modeling hypothesis in a
computerized model. The methodology we are proposing for
diagnosis of modeling errors is then mainly based on analysis
of the model parameter space. Its aim is to identify the ampli-
tude of variation in parameters allowing residuals observed
reduction. The comparisons of such results with the knowl-
edge we have about the actual system and about the modeling
hypothesis will help us to know the reasons for inadequate
model behavior and to propose model improvements. The
methodology involves three main steps:

1. Parameter screening and grouping. First, it allows one to
identify the parts of the model that could really be tested
with the available experiments (the ones related to the
active model parameters) and, hence, to reduce the possible
causes of discrepancies between measurements and simu-
lations. Second, it allows parameter grouping for further
estimation purposes.

2. Parameter estimations. This allows one to identify param-
eter vectors consistent with the model structure and data.
Two different approaches are briefly presented and
discussed. The first one involves standard Monte Carlo
methods for searching the parameter vector that minimizes
a certain objective function of the error. The second one
looks for all the parameter vectors consistent with the
observed error-bounded data, that is, leading to model
outputs included in the measurements uncertainty bands.

3. Diagnosis. The possible causes of discrepancies between
measurements and simulations are elucidated here. The
comparison between the parameter values from step 2 with
their nominal values should lead to known reasons for the
observed modeling errors and to suggested model improve-
ments.

Contrary to residuals analysis techniques, the approxima-
tion to modeling errors diagnosis based on parameter estima-
tions can be applied to both linear and nonlinear models. In
addition, it can supply very useful information concerning
model structure faults. Methods and tools for each one of these
task are briefly presented here.

Some Definitions and Notation

Thermal models for buildings can be usually described by
finite-dimensional models of the general form

where X(t) is an n-dimensional vector containing the so-called
state variable,  (t,θ) is a q-dimensional vector including the
observation variables or outputs (for simplicity, we will
assume that q = 1 in the following), and U(t) is the inputs or

X
·

t( ) F X t( ) U t( ) θ ), ,(=

ỹ t θ,( ) G X( t( ) U t( ) θ ),,=

ỹ

SE-99-06-03
excitations vector. θ is the p-dimensional vector of model
parameters (geometric, optical, and thermophysical proper-
ties, convective coefficients, etc.), and F and G are two matri-
ces of time-dependent nonlinear functions. A particular model
thus corresponds to specification of functions in matrices F
and G, as well as the parameters vector θ.

A keyword in empirical model validation is uncertainty.
Uncertainty involves measured data, model parameters, or
even the model structure:

• Measurement uncertainty: Data are always associate
with some uncertainty, if only because of the finite pr
cision of the sensors used to collect them. The appro
most commonly used to characterize such uncertai
consists in assuming that data are corrupted by addi
random noise, whose probability density function 
known. While very popular, this approach is not immun
to criticism. The probability density function assume
for the noise is not always based upon any sound p
information, and one does not necessarily have enou
data to test it. Moreover, there are situations where 
main contribution to error is not of a random nature an
therefore, not suitably described by random noise.
 An attractive alternative to the stochastic characteriz
tion of errors is characterization by upper and low
bounds only. Measured bounded-error data at time t are
thus represented by the intervals [y(t)]≡[ymin(t),ymax(t)].
 Most sensor manufacturers provide rules for computi

the maximum and minimum possible measurement error
any given range of operation, allowing ymin(t) and ymax(t) to be
computed. Structural errors may, however, lead one to cho
more pessimistic bounds than those obtained by this meth
These bounds can then be viewed as the extreme values o
error between system and model outputs that are conside
acceptable by the experimenter.
• Model parameter uncertainty: The uncertainty in model

parameters is generally not of a random nature. It c
reflect an imperfect knowledge of the system geometry
even composition; the lack of measured data for param
ters; the uncertainty due to the finite precision of the se
sors and methods used for measuring system proper
the uncertainty associated with the system exploitatio
which is generally related to unpredictable behavior of t
future users (Guyon 1997); and the imperfect knowled
we have about the physical processes taking place in
system. 
 Hence, as for data before, model parameter uncerta
ties will be characterized by upper and lower bound
Let θ = {θi, i = 1, ..., p} be the p-dimensional vector
of model parameters. Parameter uncertainty is th
described by the intervals: ,
or, in a more compact way, by

i∀           θi   θmin θmax,[ ]∈

Θ θi min, θi max,[ ] θ1 min, θ1 max,[ ]x…x θp min, θp max,[ ]=
i 1=

p

∏=
3
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which is the Cartesian product of the previous p intervals.
(Normally, X would be used to describe the Cartesian
product instead of .) The box Θ will be called param-
eters set.
 When checking model validity, the intervals before

generally represent parameter uncertainty due to the finite
precision of the sensors and methods used to estimate them.
For diagnostic purposes, they can be larger than the previous
ones, as they represent the domain of variation where we are
looking for suitable parameter values.
• Model response uncertainty: Model output uncertainty

results from the uncertainties of the model paramete
The uncertainty in the model response at time t, associ-
ated with the parameter set Θ, can be characterized by
the intervals

, 

so that 

A parameter vector θ is said to be consistent with the
bounded-error data if it leads to model outputs includ
in the measurement uncertainty intervals:

Similarly, a parameter set Θ is said to be consistent with
bounded-error data if  the equation before is ve
fied.

The Prior Parameter Set

The first step in the modeling error diagnosis method
ogy concerns the selection of the prior parameter set, 

where [θi,min θi,max] represents the allowed interval of varia
tion for the parameter in the model. (Normally, X would be
used to describe the Cartesian product instead of .)The p
parameter set definition involves grouping model paramete
selecting active model parameters, quantifying active para
eter uncertainty, and testing the consistency of the resul
parameter set with the observed bounded-error data.

Grouping Model Parameters According to Identifi-
ability Criteria. Two parameters showing no separab
effects on the model outputs (parameters strongly correla
are not identifiable separately and will thus be grouped i
unique parameter. Correlations between parameters dep
both on the model structure (the way the parameters 
involved in the model) and on the model input behavior. Wh
it is not easy to anticipate correlations induced by the mo
inputs, correlations bound up with the way the paramet
appear in the model are usually foreseeable. The easiest c
are those where two or more parameters are always grou

Π

ỹ t Θ,( )[ ] ỹmin t Θ,( ) ỹmax t Θ,( ),[ ]≡

θεΘ∀   ỹmin t Θ,( ) ỹ t Θ,( ) ỹmax t Θ,( )≤ ≤,

t    ymin t( ) ỹ t θ,( ) ymax t( )≤ ≤,∀

θ Θ∈∀

Θo θi min ,   θi max,[ ]
i 1=

p

∏=

Π
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under arithmetic operations (i.e, products, additions, etc.
the model equations.

Selecting Active Model Parameters. The objective of
screening techniques is to identify model parameters to wh
the model predictions are really sensitive (active paramete
All the parameters in the model can potentially affect t
model behavior, but generally only a small number of them 
truly important or active. The reason is that not all the parts
the system are equally excited by the inputs and not all 
physical processes taking place have a comparable effec
the quantities to be observed. The so-called active mo
parameters are those related to the dominant parts 
processes in the model. It must, however, be noticed that s
dominances are strongly influenced by the nature of the mo
inputs and the selected model outputs.

The interest of screening is twofold: it allows us to ide
tify the part of the model that could be really validated with t
available experiment and, hence, to reduce the field of po
ble causes of discrepancies between measurements and 
lations and it allows to reduce the number of free mod
parameters for further identification purposes.

Commonly used screening techniques are: 
a) Differential analysis based on calculation of the part

derivatives of the model outputs with respect to each parame
b) One-at-a-time design, which is an extension of t

differential analysis method. It is based on changing a sin
parameter at a time, running the model, and observing 
output variation. 

c) Two-level experimental designs and regression ana
sis. Contrary to one-at-a-time design, this approach invol
simultaneous variations of parameters, each of them tak
two possible levels. It allows assessment of parameter eff
by using a regression model or metamodel (Rahni 1998).

d) Group screening techniques (Walter and Piet-Lahan
1990a, 1990b; Rahni 1998) that have been proposed
screening problems involving a large number of paramete
which generally act in a sequential way. First, they comb
individual parameters into groups and experiment with the
groups as individual parameters. Then, all parameters in
nonsignificant groups are eliminated and new groups 
formed with the remaining parameters. The procedure con
ues until remaining parameters are few enough that we 
analyze them in an individual way.

Quantifying Active Model Parameter Uncertainty.
Zero-length intervals are assigned to nonactive model par
eters; they are frozen to their assumed most likely values.
the contrary, intervals [θi,min θi,max] for active parameters mus
be wide enough so that an inadequate modeling hypoth
could be identified (it is expected that values for paramet
related to a phenomenon that is erroneously represented i
model change significantly when fitting the model to the dat
For diagnostic purposes, the intervals describing param
uncertainty define the domain where we are looking f
parameter values allowing reduction of model residuals. F
instance, we assume that convective and radiative excha
SE-99-06-03
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at the surface of a vertical wall can be represented by the
Newton law with a unique and constant coefficient of
exchange, h (W⋅m-2⋅K-1). Hence, reasonable values for h
belong to [9, 10]. If, on the contrary, a joint representation of
both kinds of phenomena is inadequate, parameter h, now
representing convective fluxes only, will take very different
values (3-4 W⋅m-2⋅K-1). To be able to test such a modeling
hypothesis, a [3, 10] interval for h is required.

Preliminary Consistency Analysis. Parameter set
consistency analysis involves two main tasks: estimating
model output uncertainties associated with the parameter set
under analysis (they are a measure of the influence of param-
eter uncertainty on model outputs) and testing consistency by
comparisons between model output uncertainties and
bounded-error data. If most of the time measurement uncer-
tainty bands lie between the estimated upper and lower bounds
for model outputs, the parameter set Θο hopeful includes
parameter vectors, leading to good enough model behavior.
No changes are a priori required, and parameter estimations
can be carried out.

The most commonly used techniques for model output
uncertainty calculations are differential sensitivity analysis
and Monte Carlo methods. See Lomas and Eppel (1992) and
Palomo (1994) for an analysis of their corresponding advan-
tages and drawbacks. New techniques allowing a strong
reduction of the required computation time have been recently
proposed (Palomo and Guyon 1998).

Parameter Estimations

The main tool that we are proposing to guide modeling
error diagnosis is based on parameter estimation techniques. If
something in the model is clearly wrong, one would expect to
find large parameter displacements when fitting the model on
the measured data. The comparison between the estimated
parameter values and their nominal values should lead to
known reasons for the observed modeling errors and to
suggest model improvements. 

Problem Statement. The estimation problem can be
stated in two different ways depending on the assumptions
adopted concerning measured data.

• First statement. It assumes errorless data. Let 

be the residuals associated to the parameter vector ,
let 

be a quadratic measure of it. We are looking for t
parameter  that minimize the objective function V(θ).
Solving such a problem means finding the global minimum
it exists, of a generally complicated non-convex real-valu
function.

e t θ,( ) y t( ) ỹ t θ,( )–=

θ Θ∈

V
2 θ( ) e

2
t θ,( )

t 1=

N

∑=

θx Θ∈
SE-99-06-03
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• Second statement. Contrary to the previous one, it take
into account data uncertainty. The problem is no long
stated as “looking for  that minimizes an objec
tive function measuring the simulation error.” Instea
we are looking for all  providing simulation inside
the uncertainty intervals of the measurements. In oth
words, we are looking for all  so that 

.

Parameter Estimation Methods. Historically, methods
to solve global optimization problems have been classified
either stochastic or deterministic. Stochastic methods evalu
the objective function at randomly sampled points from t
parameter region of allowed variation. Deterministic met
ods, on the other hand, involve no elements of randomne

All global optimization algorithms can also be partitione
into two classes—reliable and unreliable. Clearly, all stoch
tic methods, including simulated annealing, clustering, a
random search, fall into the unreliable category. In fairne
however, efficiency is the strength of such methods. For n
large-scale problems may best be solved stochastically. 

The class of deterministic algorithms, including bran
and bound methods, covering methods, interval metho
tunneling, and enumerating, can be further partitioned in
two categories—methods that compute objective functi
values at sampled points (point methods) and methods 
compute function bounds over compact sets (bounding me
ods). This division further separates reliable from unreliab
methods. Point methods are inherently incapable of relia
solving the global optimization problem. On the other han
bounding methods, if properly implemented, can produ
rigorous global optimization solutions.

Two different kinds of global optimization method
(GOM) have been implemented and tested in the framew
of a project led by an international organization dealing w
energy savings and model validation tools:
• First GOM. Two random search algorithms, a pure ra

dom one and a multistart algorithm, are used in assoc
tion with the first statement of the minimization
problem.
The pure random algorithm evaluates the objective fun

tion V(θ) at n randomly sampled points : V1, V2, ..., Vn.
The solution we are looking for is then estimated as θ* so that
V(θ)* = min(V1, V2, ..., Vn).

The multistart random search algorithm is a natural exte
sion of the previous one. A number n of starting points belong-
ing to Θ are selected at random, {θ0i} i=1...n, and a random
search algorithm for local optimization is applied from ea
one of these points. The set of all terminating points (loc
extrema, {θ*i} i=1...n) hopeful includes the global minimum θ*,
which is estimated as θ* = arg min(V(θ*1),V(θ*2), ..., V(θ*n)).

As we said before, although unreliable, such methods 
especially efficient for large-scale optimization problems. 
• Second GOM. A reliable bounding method was deve

oped in association with the second statement of 

θx Θ∈

θ Θ∈

θ Θ∈

t   ỹ t θ,( )∀ ymin t( )  ymax t( )[ ]∈

θ Θ∈
5
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optimization problem. A survey of techniques for esti-
mating parameters from error-bound data can be found
in Walter and Piet-Lahanier 1990a). Recently, new tech-
niques, also allowing nonconnected parameters, are pro-
posed in Walter and Piet-Lahanier (1990b), Moore
(1992), and Jaulin and Walter (1993). The algorithm we
have developed takes inspiration from the ones pro-
posed in Moore (1992) and Jaulin and Walter (1993). It
allows exploration of disconnected subsets in Θ in a sys-
tematic way. It proceeds by deleting parts of the initial
parameter set Θ, which cannot contain feasible parame-
ter vectors, leaving a list of subsets whose union still
contains the set of all feasible parameters. Such a list of
subsets in the algorithm is technically a queue. At itera-
tion k, the algorithm performs as follows:

1. Unlist the first box Θ(k) in the queue and bisect it in the coor-
dinate direction of maximum with .

2. Test  consistency; if consistent, save it as making part
of the global solution; if inconsistent, delete it; otherwise
list  at the end of the queue. 

3. Test  consistency; if consistent, save it as making part
of the global solution; if inconsistent, delete it; otherwise
list  at the end of the queue.

As a result, the widest box remaining in the queue is
always the first one. If it is narrower than the prescribed toler-
ance, then so are all the rest and the iteration loop is termi-
nated. We note Θ* the parameter subset including solutions.

We remember that consistency analysis of parameter sets
(subsets), Θ, involves (a) calculation of the upper and lower
bounds for the model outputs, , and (b) comparison
with bounded-error data, . The parameter set Θ is
consistent with data when ; it is
inconsistent if  so that ; otherwise,
it is said to be ambiguous.

The methods allowing model output bounds estimations
without code modifications that are commonly used (Monte
Carlo methods and differential sensitivity analysis tech-
niques) make the parameter estimation method unusable due
to the computing time required. Special techniques, such as
the one proposed in Palomo and Guyon (1998), that take inspi-
ration from interval arithmetic are thus required.

Advantages and Drawbacks. The main advantages of
the second GOM method are related to both the nature of the
data and the nature of the models.

1. The method takes into account data uncertainty, as well as
their nonrandom nature. Stating the problem as looking for

 that minimizes an objective function implies the
assumption of uncorrupted data.

2. It allows nonconnected parameter set identification.
Dynamic thermal models are based on differential equa-
tions whose outputs are nonlinear in their parameters, even
if the model itself is linear. One of the major consequences
of this nonlinearity is that Θ∗ may no longer be connected.
This may result from the fact that the model is not uniquely

Θ k( ) Θ1
k( ) Θ2

k( )
∪=

Θ1
k( )

Θ1
k( )

Θ2
k( )

Θ2
k( )

ỹ t Θ,( )[ ]
y t Θ,( )[ ]

t        ỹ t Θ,( ) y t Θ,( )⊂[ ]∀
t∃ ỹ t Θ,( ) ] y t Θ,( )∩[ ] ∅=

θx Θ∈
6

identifiable but may also be due to other factors not so easily
detected (Palomo and Guyon 1998). This is especially
important when the parameters to be estimated have a phys-
ical meaning or when decisions have to taken on the basis
of their numerical values, as it is the case for diagnostic
purposes.

Others advantages are: 

3. No additional work is required for estimating the uncer-
tainty regions for the identified parameters; they come natu-
rally from the procedure itself. 

4. The solution proposed by the algorithm always includes the
optimal parameter vector (reliable method). On the
contrary, when using Monte Carlo methods, we are never
sure of getting it. The quality of the proposed solution from
Monte Carlo methods is measured in terms of probability.

Concerning stochastic methods, their main advantage is
efficiency. For now, large-scale (in parameters) problems may
best be solved stochastically. 

Diagnostic

The last step in the methodology is diagnosis. It is based
on the following.

• A certain knowledge about the model. Which phenom-
ena are represented in the model and what parame
are involved in their representation is the main inform
tion required.

• Modeling hypothesis formalization and analysis. It
involves a strictly structured way of stating modelin
hypotheses, as well as some analysis concerning 
consequences in terms of model parameters that ina
quate hypotheses provoke. This means to determ
foreseeable model parameter sets for each one of
hypotheses in the model, as well as for their correspo
ing negative statement. As, unfortunately, no rigoro
methods exist at present, the modeling hypothesis an
sis will be founded on the expert knowledge the mode
has on both the system and the model itself. T
method could be simple and economic, but it is prone
large personal biases.

• Parameter displacement analysis.This involves compar-
isons between estimated and nominal model param
values. Large differences are expected for parame
involved in phenomena that are not correctly repr
sented in the model. 

The combination of these elements of judgment sho
lead one to know reasons for the observed modeling errors
to suggest model improvements.

EXAMPLE OF APPLICATION

The methodology presented in the previous section
here applied to diagnose modeling errors in an actual build
The experimental device is shortly described in first subs
SE-99-06-03
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tion. The second subsection includes the test cell model
description, with special attention on the modeling hypothe-
sis. Results from a blind model validation are briefly discussed
in the third subsection. The next subsections are focused on
model parameter estimations and diagnosis.

Description of Empirical Validation Experiment

An experiment (Girault and Delille 1995) has been
carried out in test cells (see Figure 1) to measure the difference
between a realistic convector, located under a window, with-
out stirring of the internal air, and a purely convective heat
source in the center of the room, with stirring of air (when the
source is on). The experiment was in a natural climate, i.e., the
south wall was exposed to solar radiation and the others
surfaces were connected to guard zones. In the REFERENCE
cell, there was a purely convective heater, which is close to the
modeling used in most software programs. In the MEASURE
cell, a classical electrical convector commonly used in France
is located under the south window. The aim is to compare the
effect of energy distribution on the air temperature in the
center of the room for the realistic convector and the academic
source with stirring. The experiment began on February 25,
1995 and finished on March 19, 1995. During this experiment,
the cell configuration was as follows: guard temperatures
controlled at 10°C (50°F), no air infiltration, pseudo-rando
heating at a nominal value of 500 W, a black screen insta
behind the window in the guard zone to obtain a temperat
for longwave radiation identical to the guard temperature. F
the REFERENCE cell, the air inside the test cell was stirr
using a fan to guarantee temperature homogenization and
heating is done by a convective heater (heating fan). For
MEASURE cell, the air inside the test cell was not stirred, a
the heating is done by a classic electrical convector (the m
common type of heater used in France).

The following variables were recorded: global an
diffuse solar radiation, outdoor dry-bulb temperature, a
temperature in the thermal guards, heating power, and ind
air and radiant temperature. All data were measured at a f
minute time step, except solar radiation, which was measu
SE-99-06-03
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at a one-minute time step. The data were then averaged
undersampled at a one-hour time step. The analysis in 
section refers to the REFERENCE cell only.

The Test Cell Thermal Model

The main hypotheses in the test cell model are classif
by physical phenomena as follows:

• Hypothesis 1, heat conduction phenomena. H1.1 Heat
conduction is considered as one-dimensional; therm
bridges are not modeled. An equivalent homogeneo
multilayer wall is used for representing the floor and th
ceiling. H1.2 Constant thermophysical properties ar
assumed for all the materials. H1.3 Perfect contact
between layers is assumed. H1.4 Heat conduction
through the glazing and frameworks is assumed non
pacitive.

• Hypothesis 2, thermal infrared radiation (TIR) exchanges
and heat convective exchanges at the outdoor wall-air
interfaces. H2.1 TIR exchanges are not explicitly mod
eled. The convective-radiative flux at the kth wall surface
is estimated as φ(k) = h(k)(T(k)

surface − Tair) where h(k) is a
constant exchange parameter taking into account b
radiative and convective exchanges. H2.2 Standard val-
ues are adopted for the global exchange parameter h.

• Hypothesis 3, TIRexchanges and heat convective
exchanges at the indoor wall-air interfaces. H3.1 TIR
exchanges are explicitly modeled, although linearize
All the surfaces are assumed to be gray, with emissiv
values equal to 0.9. The reference temperature for 
earization is 280 K. H3.2 Convective heat exchanges a
the wall-air interfaces are estimated by means of 
Newton law. H3.3 Standard values are adopted for th
exchange convective parameter h.

• Hypothesis 4, indoor air and heating power treatment.
H4.1 Indoor air temperature is supposed to be homog
neous. The air is represented by a single node in 
model. H4.2 Air infiltration is assumed to be zero
H4.3 The output from the heater is assumed 100% co
Figure 1 Experimental sequence in test cells.
7
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vective. The electrical heating power is transmitted to
the indoor air node. H4.4 The heater inertia is
neglected.

• Hypothesis 5, solar radiation processor. H5.1 Solar
irradiance on the vertical south facade of the test cel
calculated from the available horizontal global and d
fuse irradiance data. Diffuse solar radiation is assum
to be isotrope, and the soil reflectivity is supposed to 
0.2. H5.2 For transmitted solar flux through glazing ca
culations, no distinction is made between global and d
fuse radiation. Window mask effects are, howeve
explicitly modeled. H5.3 Constant optical properties for
windows and walls are assumed. H5.4 Incoming solar
radiation is distributed among the wall indoor surfac
according to absorptance weighted ratios. The fract
of incoming solar radiation that is absorbed by any s
face k is αkAk(Σj(1 − ρj)Aj)

-1, where αk is the solar
absorptance of the surface and ρk its reflectance.

The model includes nine input variables and eig
outputs. Input variables to the model are the outdoor 
temperature, the horizontal global solar irradiance, the h
zontal diffuse solar irradiance, the air temperature in the th
mal guards (five inputs), and the heating power. The out
variables are the indoor air temperature, the indoor mean r
ant temperature, and the wall surfaces temperatures (six 
ables).

The model includes 110 potential free paramete
However, they can be reduced to 59 after grouping th
according to identification criteria. As the objective of mod
parameter identification is modeling error diagnostics, it mu
be noticed that 

1. optical parameters (17) could serve to test the hypoth
directly related to the solar radiation processor, mainly 
one concerning the incoming solar radiation distributi
(H4.4); 
8
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2. convective parameters (7) could be used to test the hyp
esis concerning heat exchanges at the wall-air interfa
the pertinence of using the Newton law for represent
them (H3.1), and the validity of the assumed French st
dard values for the corresponding exchange coefficie
(H2.2 and H3.3);

3. thermophysical parameters (34) can eventually be used
well as the indoor surface areas, to test the hypoth
concerning heat conduction phenomena, mainly hypothe
H1.1; 

4. finally, heating coefficients (radiative/convective ratio fo
the heater) could be used to test hypothesis H4.3.

Blind Model Validation

Simulations were performed using the mod
described above and the results were compared w
measurements (Moinard et al. 1998). Residuals are defi
as the difference between measurements and simulati
e(t) = ymeasured(t) − ysimulated(t). We will focus our atten-
tion on indoor air temperature predictions. Looking at t
residuals time behavior (Figure 2, left) it can be seen t
the model is not able to reproduce the static behavior
the test cell. The indoor air temperature is clearly overe
mated. The mean value of the corresponding residual
not satisfactory at all (−0.38°C). Similarly, the model
shows a poor dynamic behavior, the main problem
appearing at low frequencies (nonstationary behavior 
the residuals). Residuals variance is 0.53°C2. 

The analysis of the residuals normalized cumulative sp
trum (Figure 2, right) confirms these conclusions. It can 
easily seen that most of the residuals variance is concentr
at low frequencies. The modeling error diagnostic meth
proposed in Palomo et al. (1991) is now applied. Beca
model simulation aims at reproducing the effect of the exter
influences that drive the experiment, one expects a part of
residuals to be sensitive to these inputs. Hence, the prop
technique seeks to quantify the contribution of each inpu
Figure 2 Residuals from the nominal model (left) and cumulative spectrum (right).
SE-99-06-03
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the residuals. Such information helps modelers to sort the
inputs and to target the one responsible of the major part of the
error. Efforts to improve the model should then focus on the
way the model takes into account this particular input.

The contribution of each input to the residuals is analyzed
by means of the squared partial coherence functions. The
squared partial coherence for the ith input is a normalized
measure at frequency of the linear cross-correlation existing
between residuals and input i after allowance is made for the
effect of the other input variables. It takes values from 0 to 1.
Zero values mean that no correlation exists between the ith
input and the residuals, unity values mean that residuals could
be completely recovered from this input, and values between
0 and 1 correspond to situations where residuals can be
partially predicted from the ith input. Figure 3 shows the esti-
mated squared multiple and partial coherences for the indoor
air temperature residuals. It can be seen that 

• high values for the squared multiple coherency a
obtained all over the frequency interval—this mea
that no strong structural modifications of the model w
be required to improved it;

• the heating power is the input responsible for the ma
part of the error, but no conclusions on how to impro
the model can be obtained from this observati
because there are many possible sources of error in
model that could provoke strong correlations betwe
the residuals and the heating power; 

• some correlation is also detected with the solar radiat
data—it seems clear that improving the solar radiati
processor could lead to some improvement in mod
behavior.

Model Parameter Space Analysis

The methodology for modeling error diagnosis based 
the analysis of the model parameter space is here app

Figure 3 Squared multiple and partial coherences.
Residuals analysis of the nominal model.
SE-99-06-03
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(Palomo and Guyon 1998). Its aim is to identify the amplitu
of variation in parameters allowing observed reduction 
residuals. The comparisons of such results with the knowle
we have about the actual system and about the mode
hypothesis will help us to know the reasons for inadequ
model behavior and to propose model improvements. Par
eter estimations involve selecting an acceptable prior para
eter set, Θο; looking for parameter vectors consistent with th
model structure and the data; and comparing results from
previous step with the assumed nominal values for the mo
parameters (diagnosis).

Prior Model Parameters Set. Two criteria have been
used to select free model parameters. Free model param
are those to which is associated a greater uncertainty (
because related to critical modeling hypothesis) and the o
suggested by the previous residuals analysis (optical para
ters). Resulting free model parameters are (a) the convec
exchange coefficients (seven parameters), which allow on
test the pertinence of modeling hypotheses H2.2, H3.1, 
H3.3; (b) the optical properties of glazing and wall surfac
(six parameters) that mainly allow one to test hypothesis H4
and (c) all the thermophysical properties (34 parameters). 
unsatisfactory static behavior of the model could come b
from the existence of unmodeled thermal bridges or from er
neous nominal values for the thermophysical parameters
must be noted that they have not been measured but taken
the literature). Estimations of thermophysical parameters c
give some elements of judgments in this respect. For insta
a clear augmentation of the conductivity and thermal capac
values could be generally interpreted as the existence of
unmodeled thermal bridges. On the other hand, an err
modification of such parameters will lead one to conclu
otherwise. The prior parameter set Θο is then formed by 110
parameters; 63 of them are frozen to their nominal values, 
the uncertainty associated to the remaining ones (47
described by intervals whose length is chosen large enoug
that critical modeling hypothesis can be tested. For instan
we will say that hypothesis H1 does not hold when lar
displacements in thermophysical parameters were requ
for model residual reduction.

Preliminary Consistency Analysis. The model output
uncertainty due to the model parameter uncertainty descri
by Θο has been calculated by a standard Monte Carlo pro
dure. It must be noted that the parameter intervals in Θο do not
represent parameter uncertainty due to the finite precision
the sensors and methods used to estimate them. Hence
estimated model response uncertainty has nothing to do w
the model precision. For diagnostic purposes, the interv
describing parameter uncertainty must be large enough so
critical modeling hypotheses can be tested. They define 
parameter domain where we are looking for parameter val
allowing model residual reduction. Consequently, it is n
uncommon to get very large intervals for the model outp
uncertainty description. As can be seen in Figure 4 (left), m
of the time measurements lie between the estimated upper
9
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lower bounds for model outputs. The parameter set Θο hope-
fully includes parameter vectors leading to good enough
model behavior. No changes are a priori required.

Approximate Optimal Parameter Vector and Diag-
nosis. The parameter vector θ* that minimizes the variance of
the indoor air temperature residuals has been estimated by the
multistart random search algorithm described in Palomo and
Guyon (1998). Results are included in Tables 1 to 4. The third
column in these tables is given by %. Figure
4 (right) shows the time behavior of the indoor air tempera-
ture residuals associated with the fitted model. It can be seen
that the identified model reproduces quite well the static
behavior of the indoor air temperature (residuals mean value
less than 0.1°C). It also shows a general dynamic beha
that is better than the one exhibit by the nominal mod
Residuals variance is 0.15°C2 and low-frequency trends are
damped out.

The main differences observed between the identif
parameter vector and the nominal one are the following: 

a) Indoor convective coefficients for the floor and th
ceiling increase; their values are close to the ones of the ind
vertical walls. Taking into account that the air in the cell 
stirred, this could be considered a reasonable result.

b) Outdoor convective coefficients for vertical walls a
increasing too. Taking into account that the air in the therm
guards is removed with a fan, this result is also quite reas
able.

c) Solar absorptivity values are strongly reduced, indic
ing that the hypothesis concerning the incoming solar rad
tion distribution must probably be reviewed.

d) A clear general augmentation for conductivity valu
is observed, as well as for thermal capacities.

As we have noted before, such trends could be explai
by the presence of unmodeled thermal bridges. Hence, c
suggestions for model improvement are to
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• include thermal bridges in the model and use tw
dimensional representations, if possible; 

• review French standards for convective coefficien
introducing air velocity influence; 

• review solar radiation processor, mainly incoming so
radiation distribution hypothesis.

Diagnosis Confirmation. The previous steps are
repeated using another prior parameter set. The objectiv
this analysis is to get more confidence in the prior conclusio
especially with respect to thermal bridge effects. Hence, to
free model parameter set in the previous analysis, we add 
surface areas. If the effect of thermal bridges is really sign
icant, it is expected that the wall surface area stron
increases when fitting the model on the measureme
Because they are more directly related to thermal bridges t
thermophysical properties, no special trends are now expe
in conductivities and heat capacity values. The resulting fit
model shows similar performance to the previous one. T
estimated convective and the optical parameters show 
same kind of trends as in the previous analysis. An erra
behavior is now observed in significant conductivity and the
mal capacities values. However, a clear augmentation of
wall surface area appears. The nominal value for the ind
test cell area is 79.8 m2, and the identified one is 85.8 m2. This
clearly suggests the presence of unmodeled thermal brid
Parameter estimations have also been performed, leaving 
convective and optical parameters as free model parame
The identified values show the same displacements aga
nominal values as in the previous cases. However, the fi
model now shows poor static and dynamic behaviors. T
major handicap of the nominal model, which concerns 
unacceptable static behavior, can not be explained by erro
modeling convective exchanges or by faults in the so
processor.
Figure 4 Model output uncertainty bands (left) and residuals from the fitted model (right).
SE-99-06-03
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TABLE 1  
Convective Coefficient Values

Results of parameter estimation method
Convective coefficients values (W/m2⋅K)

Identified Initial value Variation(%)

Indoor vertical 5.11 4.1 −24.6

Outdoor vertical 10.65 9.1 −17.0

Wind exposed 13.03 16.6 +21.5

Indoor floor 4.77 0.9 −430.5

Outdoor floor 6.77 5.9 −14.8

Indoor ceiling 1.16 6.1 +80.9

Outdoor ceiling 10.81 11.1 +2.6

TABLE 3  
Thermal Capacity Values

Results of parameter estimation method
Thermal capacity values (J/kg⋅K)

Identified Initial value Variation(%)

Wallpaper 1033.8 938.0 −10.2

Plasterboard 557.8 680.0 +17.9

Polyestyrene 20.91 18.0 −16.1

Air layer 1.51 1.30 −16.2

Hollow blocks 1304.4 1140.0 −14.4

Concrete 1828.3 1957.0 +6.6

Styrodur 49.39 42.0 −17.6

Polyamide 1242.8 1200.0 −3.5

Floor eq. layer 1833.1 1695.1 −8.1

Honeycomb 30.59 34.90 +12.3

Facing 1610.6 1657.5 +2.8

Glass wool 9.82 8.80 −11.5

Planks 551.47 600.0 +8.1

Particleboards 879.56 840.0 −4.7

Air layer in ceiling 1.04 1.24 +15.9

Hollow door 297.83 275.0 −8.3

TABLE 2  
Solar Absorptivity(α) and 
Transmissivity (τ) Values

Results of parameter estimation method
Solar absorptivity (α) and transmittivity 

(τ) values

Identified Initial value Variation(%)

τ Glazing 0.77 0.675 −13.4

αGlazing 0.11 0.13 +13.2

αEast 0.322 0.9 +64.2

αNorth 0.434 0.9 +51.8

αWest 0.834 0.9 +7.4

αSouth 0.676 0.9 +24.9

αFloor 0.467 0.9 +48.1

αWest window 0.321 0.9 +64.3

TABLE 4  
Thermal Conductivities

Results of parameter estimation method
Thermal conductivities (W/m⋅K)

Identified Initial value Variation(%)

Wallpaper 0.168 0.14 −19.7

Plasterboard 0.382 0.35 −9.2

Polyestyrene 0.0387 0.043 +9.9

Air layer 0.0673 0.071 +5.1

Hollow blocks 1.051 1.052 +0.1

Concrete 1.52 1.39 −9.7

Styrodur 0.0333 0.029 −14.7

Polyamide 0.278 0.3 +7.2

Floor eq. layer 0.0402 0.0467 +14.0

Honeycomb 0.326 0.287 −13.6

Facing 1.207 1.15 −5.0

Glass wool 0.0445 0.042 −5.9

Planks 0.168 0.15 −12.1

Particleboards 0.196 0.17 −15.3

Air layer in ceiling 0.913 0.846 −8.0

Hollow door   0.106 0.09 -17.8
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CONCLUSIONS

Residuals analysis shows that the major handicaps of the
proposed test cell model are unacceptable static model behav-
ior (temperatures are systematically overestimated) and poor
dynamic behavior at low frequencies, the most important ones
in building thermal analysis. It identifies heating power as the
model input responsible for the major part of the observed
differences between measurements and simulations.
However, no conclusions on how to improve the model can be
obtained from this observation because there are many possi-
ble sources of error in the model that could provoke strong
correlations between the residuals and the heating power.

On the other hand, analysis of the model parameter space
allows a better understanding of the possible causes for the
residuals observed. It shows that the main differences
observed between measurements and simulations can be
explained by unmodeled thermal bridges, the adopted French
standard for convective coefficients, and the modeling
hypothesis concerning incoming solar radiation distribution.
Parameter estimation techniques seems to be a useful and
powerful tool for diagnosis.
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