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Abstract—Fault detection is essential to ensure the proper operation of
solar-thermal plants. Hence, monitoring personnel frequently analyze the data to
detect unusual behavior. While visualization approaches may considerably support
the monitoring personnel during their work, no existing application can yet deal
with the multivariate and time-dependent sensor data, or does not fully support
the users’ workflow. Thus, this work introduces the visual framework SunScreen.
It allows users to explore the sensor data, automatically detected anomalies, and
system events (e.g., already detected faults and services). The feedback from the
users shows that they appreciate the tool and especially its annotation functionality.
However, the SUS results indicate that it does not meet all requirements yet.

S olar-thermal plants use solar irradiation to pro-
duce heat. With heat accounting for approxi-
mately 50% of the global energy demand,1 this

technology could play a crucial role in the transition
to renewable energy. However, monitoring is essential
to ensure the proper operation of the plants. Thus,
monitoring personnel frequently analyze the sensor
data to detect unusual behavior.

However, the main challenge for this fault detection
is the complex behavior of solar-thermal plants and
its multidimensional, time-dependent, and non-linear
measurement data. As a result, the data is hard to in-
terpret even by experts, while automatic fault detection
algorithms are prone to raise false alarms.2,3 Visual
frameworks may considerably support the monitoring
personnel by combining domain knowledge and auto-
matic anomaly detection and letting users explore the
measurement data.

Unfortunately, no designated software for fault de-
tection at solar thermal plants exists yet. Lacking an
alternative, operators often use supervisory control
and data acquisition (SCADA) applications. However,
mainly targeted at industrial processes, they do not
support analyzing the multidimensional sensor data
and provide little functionality for exploring automatic
fault detection results. While applications related to
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anomaly detection do exist for other domains, ap-
proaches so far either focus on different data like
networks,4–6 repeatable processes,7–9 or traffic,10 do
not support the detailed analysis of multivariate de-
pendencies,11–13 or don’t allow to access contextual
information about the plant operation.14–16 The only
exception is MTV,17 which was developed in paral-
lel to this work, focusing on multivariate time series.
However, it does not allow for analyzing correlations
between faults.

Hence, this work studies the topic of visual fault de-
tection for solar-thermal plants. Our main contributions
are the following:

› We present a requirement analysis for visual
fault detection at solar-thermal systems based
on inquiries with domain experts, describing data
and related tasks.

› Based on the requirements, We introduce the
visual framework called SunScreen. The appli-
cation allows to analyze detected anomalies,
access manually annotated information, and ex-
plore the sensor data to support the fault detec-
tion process.

› We evaluate SunScreen using a usability test,
compare our results to MTV and discuss why
the current design of SunScreen does not yet
meet all identified requirements.
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FIGURE 1. Picture of a solar-thermal plant located in Graz,
Austria, providing heat for the local district heating network.
Copyright: SOLID Solar Energy Systems GmbH.

FIGURE 2. Example measurement data displaying irradiation,
thermal yield, and inlet and outlet temperatures of collectors.
Note how solar-thermal yield is correlated to irradiation but
cannot be interpreted without considering time-dependencies
due to heat up and correlations with other measurements.

DOMAIN
Solar-thermal plants are used for many applications,
for example, providing heat for district heating net-
works, domestic hot water, industrial processes, desali-
nation, or powering chiller for cooling. Plants are often
closely designed to fit the customer’s needs, leading to
unique system designs. Especially large-scale plants
are usually thoroughly monitored to ensure proper
operation and react to faults quickly.

The challenge with solar-thermal data is its com-
plex nature: The heat generation primarily depends
on solar irradiation, but the efficiency of the plant
is also highly influenced by consumer demand and

the temperatures within different parts of the system.
As such, measurements often follow daily radiation
patterns but can also be interrupted by changes in irra-
diation (e.g., clouds) or changes in consumer demand.
Additional time dependencies arise through the fluid’s
low inertia and heat accumulating in storage tanks
and collectors. Hence, the data is multidimensional
(e.g., irradiation and temperatures influencing thermal
power), time-dependent (e.g., daily radiation patterns;
heat accumulating in storage tanks and collectors; the
slow traversing speed of the fluid in pipes), and non-
linear (e.g., pumps suddenly starting).

REQUIREMENT ANALYSIS
The requirement analysis was done working closely
together with experts from SOLID Solar Energy Sys-
tems GmbH (SOLID). As designers and operators of
solar-thermal plants, they monitor many large-scale
plants worldwide. They kindly agreed to provide mea-
surement data and participate in multiple feedback
sessions over one year. Additional domain knowledge
was gathered by the first author, who worked at the
company part-time for four years and participated in
one monitoring session.

Data Abstraction
The data sets used by the monitoring personnel can
be categorized into three groups based on their source
(ref Figure 3):

The basis for analyzing solar-thermal plants is
the sensor data. Based on the data sets provided,
around 100 sensors are used to keep track of the
most important measurements at each plant. Stored
as timestamp-value pairs, the measurement data (S2)
allows insights into the plant’s various processes at
a current time. In addition, semantic information (S1),
like the sensor name and the unit of measurement,
is also needed to interpret the data. Especially the
position of the sensor (S3) and the derived hierarchy
and plant structure are essential to understanding the
flow of the fluids. Thus, displaying the plant structure
is central in most SCADA systems and other industry-
related visualization approaches. In addition, there are
also logical correlations (S4) to keep in mind, which
are based on physical relationships or system-control
set-points. For example, the flow temperatures might
be controlled based on the current demand, form-
ing a logical correlation between them. Unfortunately,
system-control information is often hidden in technical
description sheets and is rarely available.

Second, the monitoring personnel needs contextual
information about known events influencing the sys-
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FIGURE 3. Data sets needed for fault detection at solar-thermal plants, categorized into three groups. The terminology of
Munzner18 was used to determine the dataset type.

FIGURE 4. Table showing high-level tasks and domain user questions in relation to the needed monitoring data identified in
the data abstraction. Dark-colored boxes mark data essential to solving a question, while optional supporting data is marked in
lighter colors. The information to draw this plot was gathered during discussions and sessions with the domain user and through
feedback to rapid prototypes. However, distinctions between “essential” and “helpful” are somewhat vague and highly influenced
by the author’s opinion.
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tem. For example, services conducted at a plant may
explain abnormal sensor measurements, and known
faults might help diagnose new anomalies. The data
typically comprises a name and description of the
event (E1) and a start and end time (E2). It also
makes sense to reference which sensors are directly
affected by the event (E3) and which are helpful for
understanding the event (E4). In addition, events might
also have relations to other events (E5). For example,
some faults may cause other faults. These relations
are needed to understand the evolution of a fault.

Finally, the monitoring personnel might also rely on
anomaly detection algorithms to benefit from automa-
tion. The detected anomalies share similar characteris-
tics to the event data, namely, semantic information, in-
cluding a description of what the anomaly is about (A1)
and a start and end time (A2). In addition, anomaly
algorithms are often targeted at a specific sensor (A3)
whose values are monitored and use multiple sensors
as input (A4). Depending on the type of fault detection
algorithm, the probability of the anomaly (A5) and
predicted values for the target sensor (A6) might also
be available. The main challenge with anomalies is
the potentially high number of false alarms due to the
complex nature of the plant behavior and the large
number of sensors that could be tracked.2,3

Domain Tasks
We identified the following high-level tasks (T1-T5)
during our discussions with the domain users. The
summary can be seen in Figure 4, showing the iden-
tified tasks, related questions, and the data used to
answer them.

Initially, the monitoring personnel needs an
overview of the plant (T1) as a starting point for
further investigation. The overview is required on two
fronts: First, the user needs to understand the plant
structure (Q1). This gives them enough context to
correctly interpret the sensor data, anomalies, and
events. On the other hand, the monitoring personnel
wants to get a quick overview of the system status
(Q2-4). By checking recent events and detected
anomalies, the user might identify patterns or trends
that need to be investigated first.

If any anomalies are found during T1, they need
to be investigated (T2). In the end, the monitoring
personnel needs to judge if the detected anomaly is
indeed a fault or if it is just a false alarm due to
rare operating conditions or inaccurate algorithms (Q8-
Q11). Solving this task includes exploring correlated
sensors and related events and checking the sensor
data for further clues (Q5-Q7).

As automatic algorithms might not identify all faults,
monitoring personnel must manually check the system
for additional unidentified faults (T3). Here, monitoring
personnel might look for any patterns in the sensor
data that indicate abnormal system behavior (Q12).
In addition, they might also look at known events,
for example, if a fault is expected to have caused a
secondary failure (Q13).

When a fault has been identified during T2 or
T3, additional information about its cause and con-
sequences must be derived as part of fault diagno-
sis (T4). Thus, the task is to identify the affected
sensors and their location, root cause, evolution, and
fault severity (Q14-Q21). Information is gathered from
multiple angles of perspectives to describe the fault
more clearly and highlight relations to other events.

Finally, information about events must be annotated
(T5) to benefit from the derived knowledge (Q22). This
annotation allows sharing the information with fellow
analysts and system managers. In addition, the infor-
mation about known events might be helpful in future
monitoring sessions to explain anomalies, diagnose
similar faults, or find root causes.

Design Goals
Additionally, the following requirements were identified
for the visual application:

› G1 Efficient workflow —The focus is on effi-
ciently directing the user to potential faults at the
expense of undirected exploration. Otherwise,
detecting and diagnosing faults will take too long,
and monitoring will no longer be economically
feasible.

› G2 High coverage of faults —The number of
undetected faults must be as small as possible,
and all critical faults must be detectable.

› G3 Exportable results —It must be possible to
import and export events, for example, in an
external database.

› G4 Scalability —The application should work for
any arbitrary solar-thermal plant, independent of
its size and structure. Having multiple hundreds
of sensors per system should be supported.

RELATED WORK

Solar-Thermal domain
To the author’s knowledge, there is no visual appli-
cation dedicated to fault detection for solar-thermal
plants. The only exception is SunReports,16 which
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provides a basic line chart of sensor values and bench-
marks for different time intervals. However, they do not
use automated fault detection, and their product does
not scale to hundreds of sensors (goal G4).

Missing other options, monitoring personnel typ-
ically rely on system control and data acquisition
(SCADA) software. These applications allow them to
check sensor values and control the system remotely.
They usually feature a topological view of the sen-
sor positions, their current measurements, and line
charts of selected sensor measurements. Some soft-
ware even provides custom alarms and annotations as
well. However, being targeted at industrial processes
generally, they lack the support for analyzing multi-
variate time-series data and integrating more complex
anomaly detection algorithms.

Photovoltaic domain
While not much commercial software is available for
the solar-thermal domain, many more fault-detection
applications are available for photovoltaic (PV) solar
systems. Automatic fault detection is typically done by
checking for basic faults like missing data or comparing
expected with measured power generation. The sensor
data is shown via line charts, with colored backgrounds
for periods where faults occurred, sometimes showing
a summary description.

While most of these applications cover many iden-
tified tasks and data sets, they cannot be used for the
solar-thermal domain. One reason is that the underly-
ing data of solar-thermal applications is harder to inter-
pret than PV. This complexity may be explained by the
higher inertia of the solar-thermal fluid and the higher
complexity of many factors (like irradiation, consumer
demand, and storage capacity) mutually influencing
the system’s temperatures. Thus, many more sensors
must be shown simultaneously to understand the data,
and the sensors’ position seems more relevant, too. In
addition, the automatic algorithms for the solar-thermal
domain are much more prone to false alarms.2,3

Design Studies
Applications to support fault detection have also been
studied in various other domains. An overview is shown
in Figure 5.

Huovinnen and Hietanen7 focus on data from a
pulp dry facility. They assume that most of their data
corresponds to “normal” operating points and try to find
these modes using clustering. Outliers that do not fit
into these clusters are then regarded as anomalies.
However, this approach is likely to fail in the case of
solar-thermal data. In contrast to industrial processes,

where measurements are typically stable and repeat-
able, the measurements of solar-thermal plants vary
considerably due to changes in irradiation, consumer
demand, and internal temperatures. As a result, the
same operating conditions rarely occur twice, increas-
ing the difficulty of distinguishing faults from normal
operating conditions. A similar approach is also used
by TripMiner by Riverio et al.,10 which focuses on road
traffic data to detect accidents or near-accidents using
the same clustering approach.

Another example is Suschnigg et al.,8 which also
focuses on manufacturing. Using different anomaly
detection algorithms, they support users in detecting,
analyzing, and annotating abnormal process cycles in
manufacturing. While they cover almost all identified
tasks and datasets, their approach requires repeatable
processes. Similar to TripMiner and Huovinnen et al.,
this requirement is not met in the case of solar-thermal
heat generation.

SAVE from Shi et al.4 focuses on sensor networks
and supports detecting routing problems between sen-
sors. To do so, they visualize the routing paths, the
correlations between sensor measurements and sta-
tus, and the temporal evolution of routing paths and
measurements. The user can then check the graphs
for patterns and correlations manually. One drawback
is that anomaly detection is not automated, so users
must explore the data themselves. Thus, this might
conflict with goal G1 Efficient Workflow.

Another example is Steiger et al.,5 which tries to
detect anomalies of power consumption in an energy
grid. They use clustering to group similar daily pat-
terns of each sensor. To explore the results, their
visual framework shows the clusters in a scatter plot,
positioning similar patterns next to each other. One
limitation is that they require uni-variate data and that
sensors measure the same quantity only.

MetroVis from Eichmann et al.11 supports data
scientists in evaluating their fault detection algorithms.
The results are displayed using line charts, and some
functionality is provided to compare different algorithm
results. However, MetroVis only supports showing one
sensor at a time, which is insufficient to understand
the complex behavior of solar-thermal systems or di-
agnose anomalies.

Janetzko et al.12 focus on anomaly detection for
power consumption data. A tree map is used to dis-
play the hierarchy of the sensors. The sensor data is
displayed in each panel using spiral graphs, calendar
views, or line charts, while anomalies are displayed
using color encoding. However, the tree-map layout
does not scale to the hundreds of sensors used at
solar-thermal systems violating goal G4 Scalability.

April 2023 IEEE Computer Graphics and Applications 5

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2023.3308962

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



FEATURE ARTICLE

FIGURE 5. Table showing which tasks and data sets are supported by related work. The frameworks support tasks and data
shown in darker colors, while lighter colors indicate that they are only partially supported. If the task or data is not supported,
the cell is colored white.

Zhou et al.9 focus on monitoring a large manufac-
turing facility. A rule-based method assigns a criticality
index (i.e., anomaly score) to each part of the system
for its current-, short-term-, and long-term behavior.
The data shows the system’s layout, with components
colored based on their anomaly score. The user thus
gets an intuitive overview (T1) while anomalies can
be evaluated (T2) and further diagnosed (T3) in sub-
sequent views. The authors chose a color encoding
to visualize the temperature variations compared to
its reference for each zone. However, this requires
that constant reference temperatures are available.
Unfortunately, such an encoding is impossible for solar
thermal data, as temperatures fluctuate depending on
radiation and demand. In addition, details of only one
zone can be shown at a time, while analysis of solar
thermal applications requires information on multiple
parts of the system simultaneously.

Another inspiring example is NetClinic from Lui
et al.6 They aim to support fault diagnosis for com-
puter networks, using the results from an external
diagnosis tool. Conveniently, the tool also provides

suggestions for potential culprits (T4). The data is
displayed using a network graph, showing machines
and their components in circular hierarchical nodes
and their correlations as links between nodes. Another
view contains the list of anomalies, highlighting the
path from the culprit to the affected machine on click.
Unfortunately, the visual framework cannot explore the
temporal evolution of the data. While this is not critical
to diagnose faults in computer networks (e.g., wrong
router/firewall configurations), solar thermal data can-
not be understood without a temporal context. In ad-
dition, no comparable diagnosis algorithm is available
for solar thermal applications yet.

The primary goal of KnowYourEnemy from
Gschwandtner et al.13 is to check the data for quality
issues. Users can either rely on automatic checks (T2)
or investigate the data themselves (T3). Results are
displayed using a heat map, which can be configured
to show combinations of measurements, anomaly
scores, and time in different granularities. However,
the heat map can only show a maximum of three
sensors at a time, while many more correlations
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might be needed to understand specific behaviors of
solar-thermal systems.

Visplause14 also focuses on data quality assess-
ment. An overview of anomalies versus time is pro-
vided using a heat map. Each lane can be extended
to show sensors and algorithm types while time is
shown on the x-axis. The size of the cells depicts the
number of anomalies found for each period, and the
color depicts the type of anomaly algorithm that found
the anomaly. Selective sensor measurement values
are displayed redundantly using a table and a line
chart. This visual framework is considered very similar
to SunScreen. However, tasks like annotating faults
(T5) or manual fault detection (T3) are not directly
supported. As a result, no contextual information can
be accessed during diagnosis, and exploring results
seems to focus on one sensor at a time only.

Some of these issues were resolved by the more
advanced Visplore,15 developed by the same authors.
For example, checking the details of multi-variate data
is possible by displaying multiple sensor measure-
ments in subplots next to each other. Recently, a
labeling functionality was added to the software as
well. In addition, many other functionalities like cor-
relation analysis and different data representations
further allow exploring the data to a greater extent.
However, the extensive functionality conflicts with goal
G1 Efficient workflow, as users might get distracted or
overwhelmed by the sheer number of potential choices
for displaying the data. In addition, the labeling does
not allow access to detailed information about the
events (E1) yet.

In summary, the existing visual frameworks above
do not fulfill all the requirements for fault detection at
solar-thermal plants. While some applications focus on
data with different properties, especially annotation T5,
and showing event data is rarely supported (see Figure
5).

The exception is MTV,17 developed by Liu et al. in
parallel to this work. They focus on the detection and
annotation of anomalies in multivariate time series. The
identified tasks, goals, and the used datasets are very
similar to the ones defined in the Requirement Analysis
section. Their tool allows the creation of "pipelines"
running anomaly detection algorithms. An overview
page displays summarized results for each pipeline,
while a detailed page shows the measurement data
and anomalies using line charts, circular graphs, and
highlighting. A special emphasis is put on labeling and
collaborative annotation of the anomalies. The authors
report great feedback from users from the aerospace
and energy domain. The only limitations reported by
the authors are a lack of support for a large number of

measurements and no support for comparing adjacent
anomaly events. However, both these functionalities
are important for successfully monitoring solar-thermal
plants (Q4-7, Q19).

SunScreen
Hence, we present the visual framework SunScreen,
which was designed explicitly for visual fault detection
at solar thermal plants. It was developed using rapid
prototyping based on the results from the requirement
analysis.

Implementation Details
SunScreen is implemented in vue.js, primarily relying
on the libraries D3.js and Plotly.js. SOLID provides
data, including almost all the data sets identified in the
data abstraction. Hence, the tool can access events
manually inserted by the monitoring personnel (E1-E4)
and the sensor data (S1-S3) from about 100 sensors
per plant. However, relations between events (E5)
and sensor correlations (S4) were unavailable. Finally,
an anomaly database provides results from automatic
fault detection algorithms (A1-A5). More specifically,
the following algorithm types are used:

› Missing data —Checks if sensor data is missing
or contains NAN-values (i.e., Not A Number).

› Constant data —Checks if sensor values stay
constant for too long.

› Collector stagnation —Checks whether the col-
lector temperature exceeds 130°C.

› SunSearcher — Early version of a machine
learning algorithm called Fault-Detective.3 It au-
tomatically identifies correlated sensor measure-
ments using recursive feature selection and then
models the relations using random forest regres-
sion. Multiple algorithms are used to track all
sensor measurements. An anomaly is raised if
the difference between predicted and measured
values is too high.

Design
A screenshot of SunScreen can be seen in Figure 6.
Instead of describing each part of the framework with
words, we present the design of SunScreen using a
Data-Comic in Figure 7. This idea is inspired by Bach
et al.,19 and we hope to thereby reduce the amount of
switching between text and figure. In addition, the Data
Comic in Figure 8 shows how SunScreen can detect
and diagnose faults.
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FIGURE 6. Screenshot of SunScreen. A description of each part can be seen in Figure 7.

Design Decisions
SunScreen was developed using rapid prototyping,
and many feedback sessions with domain users were
carried out to improve its design. This subsection
discusses these results and explains why certain visual
encodings were used for certain parts of SunScreen.

Why focus on time? The central part of SunScreen
shows the data (events, anomalies, and sensor val-
ues) versus time. However, we also experimented with
other options in the early stages of the prototype.
For example, using the position of the sensors (dis-
played as a topological view), the relations between
sensors (displayed as graphs), or the sensors and
their anomaly score (displayed as a list) as the main
view. Nevertheless, the domain users preferred the
time-based approach, arguing that understanding the
system’s temporal behavior is the data’s most critical
aspect. For example, latent faults may only be active
at certain times, and detecting and diagnosing faults
without analyzing the evolution of measurement values
is impossible.

Why not use the sensor positions? The sensor posi-
tions are vital to comprehending the system’s behavior
(see Data Abstraction S4). They play a critical role in
interpreting the sensor data and have been identified
as vital to gaining an overview of the system (T1).
Nevertheless, the sensor positions are currently not

used by SunScreen. The reason is that they do not
change over time; thus, a simple printout or image of
the system hydraulics is sufficient to support most of
the identified tasks. Although this is only an interim
solution, using the sensor positions was postponed,
and more time was spent on features with higher
priority instead.

Why show anomalies and events in different graphs?
Although the data properties of anomalies and events
are very similar, we show them in different subplots.
The reason is that events are secured information from
the domain user, while the detected anomalies must
be verified first. The difference also shows in the rela-
tionship to sensors: Anomalies are tightly connected
to sensors, as their measurement values are used
for fault detection. In contrast, events might not be
connected to sensors at all (e.g., in the case of a non-
intrusive service), or affected sensors might not have
been identified yet. Thus, the decision was to show
events and anomalies in separate graphs.

Why use Gantts to display events? The event data
is displayed using Gantt charts—encoding the event’s
start, end, type, and severity. Other early ideas used
line charts or heat maps to show the number of events
or severity versus time. However, these approaches
were ruled out because the domain user needs in-
formation about each event instead of aggregated
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FIGURE 7. Data Comic providing an overview of SunScreen
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FIGURE 8. Data Comic showing a exemplary use of SunScreen
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information. In contrast, the Gantt chart provides the
user with exactly the information they need. Namely,
the start (start of the Gantt), end (end of the Gantt),
duration (length of the Gantt), type (hue of the Gantt),
severity (saturation), and the title of the event (embed-
ded as tool-tip). By positioning the Gantts on lanes
based on the type and severity of the event, the visual
clutter is minimized.

Why use a heat map to display anomalies? The
Anomaly-Heat-map supports the user in identifying
anomalous sensors and detecting correlations be-
tween anomalies. Especially the temporal evolution of
the anomalies is essential to the user. Hence, the
graph should encode the number of anomalies of each
sensor versus time. Using heat maps to display this
information is thus both practical and intuitive, as they
encode time (x-axis), sensor names (y-axis), and the
number of anomalies (color channel) intuitively. This
choice is backed up by Visplause14 and Visplore,15

which successfully use a similar encoding and inspired
our Anomaly-Heat-map. Alternatives like line charts
and horizon graphs were ruled out because they put
too much emphasis on the number of anomalies and
introduce unnecessary clutter. At the same time, Gantt
graphs require too much space.

Why mix juxtaposition and superposition in the line
charts? In the Time Panel, measurement values of
sensors with the same unit are shown in the same
subplot, while sensors with different units are shown
in separate subplots. This was done to limit visual
clutter and better support comparisons. For example,
a user might want to select all collector temperatures
and check for outliers. Due to the high correlations,
the measurements are typically very similar to each
other. Detecting outliers is thus very easy if values
are shown on the same plot. In contrast, the lines are
hard to distinguish if too much different data is shown.
Hence, the choice was made to separate sensor data
with different units, as they often have different trends,
and detailed comparisons are less likely.

Why Tabs for the Details Panel? The requirement
analysis shows that not all parts of the data are needed
at once. Instead, solving different tasks might require
very different parts of the data. Showing all the data
together would need a lot of space and overwhelm
the user with information. Thus, tabs enable details
on demand while hiding not-required information. This
way, the user can act flexibly but still focus on the data
they need.

FIGURE 9. System Usability Scale results for SunScreen.
The scores of each participant are displayed as yellow cir-
cles, while the average value is displayed as a yellow line.
In addition, quantile ranges and acceptability for SUS tests
based on empirical studies21 are displayed to better interpret
the results

Evaluation
Usability tests were conducted with five domain ex-
perts from SOLID. All participants (two researchers,
two engineers, and one target user) are experienced
in analyzing solar-thermal data, typically using SCADA
systems.

After a short introduction to SunScreen (about
20 minutes long), participants were asked to perform
some predefined tasks or explore SunScreen on their
own, based on their personal preference. To gain more
insights, the participants were told to describe their
interactions and what they intended to do by speaking
aloud. After working with SunScreen for one hour,
they were asked to fill out an unmodified System-
Usability-Scale (SUS) questionnaire.20,21 In the end,
the participants were asked to give overall feedback
about SunScreen in a short semi-structured interview
(about 5 minutes).

The results from the SUS questionnaires can be
seen in Figure 9. Individual scores range between 50
and 72.5, and the average score is 62.5. Based on
empirical studies done by Bangor et al.,21 this indicates
only moderate usability of SunScreen. Statements that
received low scores were “I think I would need the sup-
port of a technical person to be able to use this system”
and “I would imagine that most people would learn to
use this system very quickly.” All other statements were
rated as good or at least with average scores by all
participants.

Even though the individual scores for each par-
ticipant differed, the feedback from the interview was
relatively homogeneous. Apart from some bugs and
inconsistencies that the participants discovered, the
following issues are the most relevant:

› Missing knowledge / “overwhelming” — Most
users reported being overwhelmed with infor-
mation at some point in their interaction with
SunScreen: “Too much information at once . . .
events, anomalies . . . one cannot solve this in
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one session”. One domain user remarked that
“the problem is not the tool, but that there are
very few people that can interpret both the sen-
sor data and the algorithm results.” These types
of anomaly detection algorithms are still new
to most domain users who participated in the
usability study. Hence, being tasked to under-
stand the algorithm results and interpreting the
system’s behavior simultaneously was a difficult
task (see, for example, Figure 11). It indicates
that the tool should provide better guidance
and overviews for the user and better ways to
make the algorithms understandable. Another
user mentioned that “one has to grow into it,”
indicating that more extensive training might also
result in better usability of SunScreen.

› “Too many anomalies” — Another issue was
the sheer number of anomalies found by the
algorithms. Because they were not optimized,
the algorithms were very sensitive, resulting in
many wrongly identified anomalies (false pos-
itives). This was done deliberately to check if
SunScreen is good enough to compensate for
bad fault detection algorithms. However, users
were frustrated when faced with thousands of
anomalies and an extraordinary rate of incorrect
suggestions (around 70%-90% false positives).
They reported that “There are thousands of use-
less anomalies, and only maybe a hundred of
them are correct. I don’t have enough time to
check them all” (see, for example, Figure 10).
Hence, SunScreen cannot compensate for such
a high false-positive rate of anomalies. Instead,
the anomaly algorithms need better accuracy,
or SunScreen must be improved to identify and
filter out incorrect anomalies.

However, a user also highlighted the potential of Sun-
Screen, arguing that it is nice to combine automatic
fault detection results, annotated events, and sensor
data in one tool. Mainly the direct annotation of events
was regarded very positively.

CONCLUSION
SunScreen is the first visual framework for fault de-
tection directly targeted at solar-thermal systems. It
allows for analyzing the complex multi-variate system
data, evaluating automatically detected anomalies, and
viewing system events which give vital hints to interpret
the data. By annotating discovered events, SunScreen
allows saving the information for future sessions. The
use case clearly shows evidence that SunScreen is

FIGURE 10. Starting the application, the users are confronted
with a very large number of anomalies (in this case, 1415).
Most of them are false positives.

FIGURE 11. The graph shows measurement data related to
the anomaly highlighted in the Anomaly heat map. Raised by
a SunSearcher algorithm, the anomaly is likely caused by a
rainy day resulting in unusually low-temperature readings (see
lower plot) on the 24th of August. However, as this is typical
behavior to the domain experts, it was not clear to them what
the anomaly suggested.

usable. At the same time, the feedback from the partic-
ipants emphasizes that integrating system events and
supporting annotation is an integral first step to im-
proving the quality of monitoring. However, the usability
test shows that the tool does not yet fulfill the user’s
requirements.

Encountered Pitfalls
Reflecting on the evaluation results, we believe to have
experienced the pitfall "PF-4: No Real Data Available"
as described by Sedlmair et al.22 The anomaly detec-
tion algorithms were introduced shortly before the de-
velopment of SunScreen started. Thus, the algorithms
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lacked accuracy, and the domain users were not yet ac-
customed to interacting with these new anomalies and
algorithms. As a result, both the requirement analysis
and the evaluation of SunScreen are less accurate.
First, observing the user carrying out the Evaluate
Anomaly task (T2) during the requirement engineering
was impossible. Second, feedback to SunScreen is
mixed up with feedback to the anomaly detection algo-
rithm SunSearcher.3 In hindsight, a visual framework
focusing on manual fault detection would have been
easier to validate. Nevertheless, it was a strategic
choice of the stakeholders to opt for automatic fault
detection to benefit from the automation.

Design Goals
As a result of this pitfall, the design goals are only par-
tially fulfilled. G1 Efficient workflow is inhibited by the
number of anomalies detected. For the same reason,
G2 High coverage of faults is also not met, as it is
impossible to evaluate all identified anomalies. On the
other hand, we regard the design goals G3 Exportable
results and G4 Scalability as success. The annotation
received positive feedback, and no concerns were re-
ported about using the tool for different, more complex
solar-thermal systems.

Comparison to MTV
Developed in parallel, there are some similarities
between SunScreen and MTV.17 The goals, iden-
tified tasks, and available datasets are practically
the same. Both frameworks use regression-based
machine-learning algorithms to detect anomalies, let
users analyze the results, and put particular emphasis
on annotating the results. The main view of both
tools displays the measurements using line charts, and
both tools use the outer right part of the screen for
annotation and accessing more details.

Differences to SunScreen are especially the func-
tionality for adding new pipelines (i.e., algorithms), dis-
playing algorithm predictions and residuals, searching
for similar measurements, and overall better usabil-
ity. The former two functionalities significantly improve
the explainability of the algorithm results. This indi-
cates that utilizing this data in SunScreen might have
helped users interact with the anomalies. In contrast,
SunScreen emphasizes the time-dependency between
events and anomalies and shows different algorithm
results alongside each other. While, on the one hand,
this is required for successful Fault-Diagnosis at solar-
thermal systems (T4, Q19), it also confronts the user
with a multitude of anomaly results that might over-
whelm the user. Nevertheless, we believe that most

of the differences in usability can be explained by the
different accuracy of the anomaly detection algorithms
used.

The similarities between the two frameworks also
indicate that the design choices of SunScreen might
be generalizable to multivariate time series in general,
especially in the case of highly correlated measure-
ments and in case temporal relations between events
and anomalies are essential.

Future work
After the usability test, the choice was made to dis-
card the anomaly-related views. Without the many
anomalies, users were less overwhelmed, and SOLID
adopted the tool for monitoring purposes. Future work
focuses on continuously improving the visual frame-
work and reintroducing more easy-to-understand and
accurate anomaly algorithms. Other future work might
contain:

› Adding more support for design goal G1 Efficient
workflow by introducing new visual interfaces for
getting an overview of anomalies, events, and
sensor data.

› Showing anomaly algorithm predictions and re-
sults to improve the explainability of the anomaly
algorithms and aid the user in decision-making.

› Reworking the annotation mechanism, using
comments (E1) and relations between events
(E5) similar to issue tracking systems and re-
vising the Gantt-Chart to show the relations.

› Incorporating the sensor position and the struc-
ture of the plant (S4) might further improve the
manual fault detection and the overall usability
of SunScreen.
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